查看原文
其他

minfi包处理甲基化数据

阿越就是我 医学和生信笔记 2023-06-15
关注公众号,发送R语言python,可获取资料

💡专注R语言在🩺生物医学中的使用


甲基化分析应知应会的另一个R包:minfiChMAP包的很多的函数都有minfi包的影子。

minfi使用起来也很简单,就是5个对象走一遍流程即可,下面还是用之前的GSE194282数据集进行演示!

  • 读取数据

  • 数据探索

  • 质控

  • 标准化

  • 过滤

  • 差异分析

  • 注释

读取数据

suppressMessages(library(minfi))

ChAMP包差不多,也是指定文件夹,文件夹内有IDAT文件和样本信息csv文件。

baseDir <- "./gse149282/GSE149282_RAW/"

首先是读取csv文件,这个文件需要自己制作,可以参考这篇文章:ChAMP分析甲基化数据:样本信息csv的制作和IDAT读取

targets <- read.metharray.sheet(baseDir, 
                                pattern = "sample_type.csv"
                                )
## [read.metharray.sheet] Found the following CSV files:
## [1] "./gse149282/GSE149282_RAW/sample_type.csv"

targets
##    Sample_Name Sample_Type  Array                   Slide
## 1   GSM4495491      normal R01C01 GSM4495491_200811050117
## 2   GSM4495492      cancer R02C01 GSM4495492_200811050117
## 3   GSM4495493      normal R03C01 GSM4495493_200811050117
## 4   GSM4495494      cancer R04C01 GSM4495494_200811050117
## 5   GSM4495495      normal R05C01 GSM4495495_200811050117
## 6   GSM4495496      cancer R06C01 GSM4495496_200811050117
## 7   GSM4495497      normal R07C01 GSM4495497_200811050117
## 8   GSM4495498      cancer R08C01 GSM4495498_200811050117
## 9   GSM4495499      normal R01C01 GSM4495499_200811050116
## 10  GSM4495500      cancer R02C01 GSM4495500_200811050116
## 11  GSM4495501      normal R03C01 GSM4495501_200811050116
## 12  GSM4495502      cancer R04C01 GSM4495502_200811050116
## 13  GSM4495503      normal R05C01 GSM4495503_200811050116
## 14  GSM4495504      cancer R06C01 GSM4495504_200811050116
## 15  GSM4495505      normal R07C01 GSM4495505_200811050116
## 16  GSM4495506      cancer R08C01 GSM4495506_200811050116
## 17  GSM4495507      cancer R01C01 GSM4495507_202193490061
## 18  GSM4495508      normal R02C01 GSM4495508_202193490061
## 19  GSM4495509      cancer R03C01 GSM4495509_202193490061
## 20  GSM4495510      normal R04C01 GSM4495510_202193490061
## 21  GSM4495511      cancer R05C01 GSM4495511_202193490061
## 22  GSM4495512      normal R06C01 GSM4495512_202193490061
## 23  GSM4495513      cancer R07C01 GSM4495513_202193490061
## 24  GSM4495514      normal R08C01 GSM4495514_202193490061
##                                                    Basename
## 1  ./gse149282/GSE149282_RAW/GSM4495491_200811050117_R01C01
## 2  ./gse149282/GSE149282_RAW/GSM4495492_200811050117_R02C01
## 3  ./gse149282/GSE149282_RAW/GSM4495493_200811050117_R03C01
## 4  ./gse149282/GSE149282_RAW/GSM4495494_200811050117_R04C01
## 5  ./gse149282/GSE149282_RAW/GSM4495495_200811050117_R05C01
## 6  ./gse149282/GSE149282_RAW/GSM4495496_200811050117_R06C01
## 7  ./gse149282/GSE149282_RAW/GSM4495497_200811050117_R07C01
## 8  ./gse149282/GSE149282_RAW/GSM4495498_200811050117_R08C01
## 9  ./gse149282/GSE149282_RAW/GSM4495499_200811050116_R01C01
## 10 ./gse149282/GSE149282_RAW/GSM4495500_200811050116_R02C01
## 11 ./gse149282/GSE149282_RAW/GSM4495501_200811050116_R03C01
## 12 ./gse149282/GSE149282_RAW/GSM4495502_200811050116_R04C01
## 13 ./gse149282/GSE149282_RAW/GSM4495503_200811050116_R05C01
## 14 ./gse149282/GSE149282_RAW/GSM4495504_200811050116_R06C01
## 15 ./gse149282/GSE149282_RAW/GSM4495505_200811050116_R07C01
## 16 ./gse149282/GSE149282_RAW/GSM4495506_200811050116_R08C01
## 17 ./gse149282/GSE149282_RAW/GSM4495507_202193490061_R01C01
## 18 ./gse149282/GSE149282_RAW/GSM4495508_202193490061_R02C01
## 19 ./gse149282/GSE149282_RAW/GSM4495509_202193490061_R03C01
## 20 ./gse149282/GSE149282_RAW/GSM4495510_202193490061_R04C01
## 21 ./gse149282/GSE149282_RAW/GSM4495511_202193490061_R05C01
## 22 ./gse149282/GSE149282_RAW/GSM4495512_202193490061_R06C01
## 23 ./gse149282/GSE149282_RAW/GSM4495513_202193490061_R07C01
## 24 ./gse149282/GSE149282_RAW/GSM4495514_202193490061_R08C01

然后就是根据csv文件读取IDAT文件:

RGset <- read.metharray.exp(targets = targets,
                            force = T
                            )

RGset
## class: RGChannelSet 
## dim: 1051815 24 
## metadata(0):
## assays(2): Green Red
## rownames(1051815): 1600101 1600111 ... 99810990 99810992
## rowData names(0):
## colnames(24): GSM4495491_200811050117_R01C01
##   GSM4495492_200811050117_R02C01 ... GSM4495513_202193490061_R07C01
##   GSM4495514_202193490061_R08C01
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19

现在列名很长,把名字改一下:

sampleNames(RGset) <- targets$Sample_Name
RGset
## class: RGChannelSet 
## dim: 1051815 24 
## metadata(0):
## assays(2): Green Red
## rownames(1051815): 1600101 1600111 ... 99810990 99810992
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19

这个RGChannelSetminfi中一个很重要的对象,类似于表达谱芯片数据中的ExpressionSet对象,接下来的一系列操作都是从这个对象开始的。β值矩阵和样本信息都在这个对象里。

beta.m <- getBeta(RGset)
## Loading required package: IlluminaHumanMethylationEPICmanifest

beta.m[1:4,1:4]
##            GSM4495491 GSM4495492 GSM4495493 GSM4495494
## cg18478105 0.02875489 0.06142969 0.03667535 0.05015362
## cg09835024 0.02900064 0.03217275 0.05820881 0.09295855
## cg14361672 0.70473730 0.57060400 0.72168755 0.45141877
## cg01763666 0.82418887 0.84666806 0.66462600 0.81427334
pd <- pData(RGset) # 获取样本信息
pd[1:4,1:4]
## DataFrame with 4 rows and 4 columns
##            Sample_Name Sample_Type       Array                  Slide
##            <character> <character> <character>            <character>
## GSM4495491  GSM4495491      normal      R01C01 GSM4495491_200811050..
## GSM4495492  GSM4495492      cancer      R02C01 GSM4495492_200811050..
## GSM4495493  GSM4495493      normal      R03C01 GSM4495493_200811050..
## GSM4495494  GSM4495494      cancer      R04C01 GSM4495494_200811050..

甲基化矩阵的两种注释包:

  • manifest:主要包含matrix design,
  • annotation:甲基化位点的位置,SNP信息等。
annotation(RGset)
##                          array                     annotation 
## "IlluminaHumanMethylationEPIC"                 "ilm10b4.hg19"

数据探索

主要是看样本质量如何。

可以画density plot:

densityPlot(dat = RGset, sampGroups = pd$Sample_Type)
unnamed-chunk-9-152516878

和下面这个函数一样的结果:

# 会在当前目录下生成一个pdf文件
qcReport(rgSet = RGset,
         sampNames = pd$Sample_Name,
         sampGroups = pd$Sample_Type,
         pdf = "qcReport.pdf",
         maxSamplesPerPage = 24
         )

mds plot也是很简单,这个图其实就是主成分分析的图,横纵坐标分别是第一主成分、第二主成分:

mdsPlot(dat = RGset, 
        sampGroups = pd$Sample_Type,
        sampNames = pd$Sample_Name
        )
unnamed-chunk-11-152516878

这两个图和ChAMP出的图一模一样!因为ChAMP调用了这个包的方法。

densityBeanPlot(dat = RGset,
            sampGroups = pd$Sample_Type
            )
unnamed-chunk-12-152516878
controlStripPlot(RGset)
unnamed-chunk-13-152516878
unnamed-chunk-13-252516878

质控

首先是根据P值过滤低质量的探针和样本,一般P值大于0.05的样本要去除。

# 计算P值
detP <- detectionP(rgSet = RGset)

dim(detP)
## [1] 866091     24
detP[1:4,1:4]
##               GSM4495491 GSM4495492    GSM4495493 GSM4495494
## cg18478105  0.000000e+00          0  0.000000e+00          0
## cg09835024  0.000000e+00          0  0.000000e+00          0
## cg14361672  0.000000e+00          0  0.000000e+00          0
## cg01763666 2.517235e-299          0 1.969474e-278          0

可以画图看下每个样本中的平均P值,base r就很简单了:

barplot(colMeans(detP),
        col = palette.colors(24,"Alphabet"),
        ylim = c(0,0.0005),
        las = 2
        )
unnamed-chunk-15-152516878

我们这个数据所有样本质量都挺好的,所以没有要去除的样本:

# 去除低质量的样本
keep <- colMeans(detP) <0.05
RGset <- RGset[, keep]
dim(RGset) # 还是24个样本
## [1] 1051815      24

记得把样本信息和P值矩阵也更新一下:

targets <- targets[keep,] # 还是24个样本
detP <- detP[,keep]

标准化

然后是对数据进行标准化。

提供了6种预处理的方法,实际使用中选择1种即可,也可以都试一下看看区别。

  • preprocessRaw : No processing.
  • preprocessIllumina : Illumina preprocessing, as performed by Genome Studio (reverse engineered by us).
  • preprocessSWAN : SWAN normalization, described in (Maksimovic, Gordon, and Oshlack 2012).
  • preprocessQuantile : Quantile normalization (adapted to DNA methylation arrays), described in (Touleimat and Tost 2012, @minfi)
  • preprocessNoob : Noob preprocessing, described in (Triche et al. 2013).
  • preprocessFunnorm : Functional normalization as described in (Fortin et al. 2014).

我们这个甲基化芯片是Illumina EPIC的,不同方法都试一下。

mset.raw <- preprocessRaw(rgSet = RGset)
mSet.illu <- preprocessIllumina(rgSet = RGset)
mset.swan <- preprocessSWAN(rgSet = RGset)
mset.quan <- preprocessQuantile(RGset)
## [preprocessQuantile] Mapping to genome.
## Loading required package: IlluminaHumanMethylationEPICanno.ilm10b4.hg19
## [preprocessQuantile] Fixing outliers.
## [preprocessQuantile] Quantile normalizing.
mset.noob <- preprocessNoob(rgSet = RGset)
mset.fun <- preprocessFunnorm(rgSet = RGset)
## [preprocessFunnorm] Background and dye bias correction with noob
## [preprocessFunnorm] Mapping to genome
## [preprocessFunnorm] Quantile extraction
## [preprocessFunnorm] Normalization

上面几种标准化方法有的需要基因组探针的位置,有的不需要,所以经过标准化之后变成了不同的对象:

sapply(list(mset.raw,mSet.illu,mset.swan,mset.quan,mset.noob,mset.fun),class)
## [1] "MethylSet"       "MethylSet"       "MethylSet"       "GenomicRatioSet"
## [5] "MethylSet"       "GenomicRatioSet"

前面带Genomic的是已经比对到基因组上的,这几个对象可以通过函数转化:

mSet.illu.g <- mSet.illu |> 
  ratioConvert() |> # 这两个函数顺序可以互换
  mapToGenome()

mSet.illu.g
## class: GenomicRatioSet 
## dim: 865859 24 
## metadata(0):
## assays(3): Beta M CN
## rownames(865859): cg14817997 cg26928153 ... cg07587934 cg16855331
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19
## Preprocessing
##   Method: Illumina, bg.correct = TRUE, normalize = controls, reference = 1
##   minfi version: 1.42.0
##   Manifest version: 0.3.0

minfi中最重要的5种对象,都是从RGChannelSet开始的,它们之间的关系可以用下面这张图展示:

可以画图看一下使用不同的方法之后的density plot:

par(mfrow = c(3,2))

densityPlot(getBeta(mset.raw),sampGroups = pd$Sample_Type,main = "mset.raw")
densityPlot(getBeta(mSet.illu),sampGroups = pd$Sample_Type,main = "mSet.illu")
densityPlot(getBeta(mset.swan),sampGroups = pd$Sample_Type,main = "mset.swan")
densityPlot(getBeta(mset.quan),sampGroups = pd$Sample_Type,main = "mset.quan")
densityPlot(getBeta(mset.noob),sampGroups = pd$Sample_Type,main = "mset.noob")
densityPlot(getBeta(mset.fun),sampGroups = pd$Sample_Type,main = "mset.fun")
unnamed-chunk-21-152516878

过滤

我们选择preprocessIllumina方法得到的结果继续进行接下来的分析。

首先是去除低质量的探针,P值大于0.01的探针需要去除。

# 探针顺序变一致
detP <- detP[match(featureNames(mSet.illu.g),rownames(detP)),] 

# 只保留P值小于0.01的探针
keep <- rowSums(detP < 0.01) == ncol(mSet.illu.g) 
table(keep)
## keep
##  FALSE   TRUE 
##   7176 858683

去掉了7176个探针!

mSet.illu.g <- mSet.illu.g[keep,]
mSet.illu.g
## class: GenomicRatioSet 
## dim: 858683 24 
## metadata(0):
## assays(3): Beta M CN
## rownames(858683): cg26928153 cg16269199 ... cg07587934 cg16855331
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19
## Preprocessing
##   Method: Illumina, bg.correct = TRUE, normalize = controls, reference = 1
##   minfi version: 1.42.0
##   Manifest version: 0.3.0

然后是过滤掉X/Y染色体上的探针。

# 获取探针注释信息
annEPIC <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
annEPIC[1:4,1:4]
## DataFrame with 4 rows and 4 columns
##                    chr       pos      strand        Name
##            <character> <integer> <character> <character>
## cg18478105       chr20  61847650           -  cg18478105
## cg09835024        chrX  24072640           -  cg09835024
## cg14361672        chr9 131463936           +  cg14361672
## cg01763666       chr17  80159506           +  cg01763666

drop <- (featureNames(mSet.illu.g) %in% annEPIC$Name[annEPIC$chr %in
                                                     c("chrX","chrY")])
table(drop)
## drop
##  FALSE   TRUE 
## 839801  18882

mSet.illu.g <- mSet.illu.g[!drop,] # 去掉18882个探针

mSet.illu.g
## class: GenomicRatioSet 
## dim: 839801 24 
## metadata(0):
## assays(3): Beta M CN
## rownames(839801): cg26928153 cg16269199 ... cg07660283 cg09226288
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19
## Preprocessing
##   Method: Illumina, bg.correct = TRUE, normalize = controls, reference = 1
##   minfi version: 1.42.0
##   Manifest version: 0.3.0

去除对CpG有影响的SNP探针:

mSetSqFlt <- dropLociWithSnps(mSet.illu.g)
mSetSqFlt # 839801→811152
## class: GenomicRatioSet 
## dim: 811152 24 
## metadata(0):
## assays(3): Beta M CN
## rownames(811152): cg26928153 cg16269199 ... cg07660283 cg09226288
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19
## Preprocessing
##   Method: Illumina, bg.correct = TRUE, normalize = controls, reference = 1
##   minfi version: 1.42.0
##   Manifest version: 0.3.0

还需要去除映射到多个位置上面的探针,cross-reactive probes,使用的是Chen et al[1]发现的信息。

# 需要安装methylationArrayAnalysis包
dataDirectory <- system.file("extdata", package = "methylationArrayAnalysis")
xReactiveProbes <- read.csv(file=paste(dataDirectory, "48639-non-specific-probes-Illumina450k.csv", sep="/"), stringsAsFactors=FALSE)

keep <- !(featureNames(mSetSqFlt) %in% xReactiveProbes$TargetID)
table(keep)
## keep
##  FALSE   TRUE 
##  24675 786477

又过滤掉24675个探针!

mSetSqFlt <- mSetSqFlt[keep,] 
mSetSqFlt
## class: GenomicRatioSet 
## dim: 786477 24 
## metadata(0):
## assays(3): Beta M CN
## rownames(786477): cg26928153 cg16269199 ... cg05111475 cg09226288
## rowData names(0):
## colnames(24): GSM4495491 GSM4495492 ... GSM4495513 GSM4495514
## colData names(6): Sample_Name Sample_Type ... Basename filenames
## Annotation
##   array: IlluminaHumanMethylationEPIC
##   annotation: ilm10b4.hg19
## Preprocessing
##   Method: Illumina, bg.correct = TRUE, normalize = controls, reference = 1
##   minfi version: 1.42.0
##   Manifest version: 0.3.0

做完这些步骤后可以再次画图比较下:

par(mfrow=c(1,2))

# 原先的
mdsPlot(dat = RGset, 
        sampGroups = pd$Sample_Type,
        sampNames = pd$Sample_Name
        )

# 现在的
mdsPlot(dat = getBeta(mSetSqFlt),
        sampNames = pd$Sample_Name,
        sampGroups = pd$Sample_Type
        )
unnamed-chunk-28-152516878

可以看到minfi的每个过滤步骤都是需要一步一步进行,在这方面ChAMP真的是太省心了,在读取数据时顺便就把这事干掉了!

后面就是差异分析了。差异分析需要用到M矩阵或者β矩阵,可以通过getM()/getBeta()函数从以上几个对象中提取。作者认为M矩阵具有更好的统计学特点,更适合统计分析,β矩阵更好解释生物学意义。

差异分析

也是分为3个层次:DMP,DMR,block

首先是DMP,我们这里用M矩阵进行差异分析:

myDMP.m <- dmpFinder(dat = getM(mSetSqFlt),
                     pheno = pd$Sample_Type,
                     type = "categorical"# 分组变量是分类变量
                     qCutoff = 1# FDR q-value cutoff
                     shrinkVar = F # 样本数量小于10 用T
                     )

head(myDMP.m)
##             intercept        f         pval         qval
## cg22697045 -0.3495536 503.7669 1.180903e-16 3.936793e-11
## cg06319475  0.8345460 440.4474 4.857842e-16 8.097331e-11
## cg26199906  0.1397303 423.6200 7.309574e-16 8.122678e-11
## cg07774533 -0.9310782 411.6857 9.859642e-16 8.217309e-11
## cg26256223  1.2463769 401.0223 1.297355e-15 8.650023e-11
## cg16306898  0.4928779 385.1462 1.977991e-15 1.099010e-10

我们再用β矩阵试试看:

myDMP.b <- dmpFinder(dat = getBeta(mSetSqFlt),
                     pheno = pd$Sample_Type,
                     type = "categorical"# 分组变量是分类变量
                     qCutoff = 1# FDR q-value cutoff
                     shrinkVar = F # 样本数量小于10 用T
                     )

head(myDMP.b)
##            intercept        f         pval         qval
## cg26256223 0.7010912 854.8678 4.219127e-19 1.414628e-13
## cg16601494 0.7142688 802.5722 8.304373e-19 1.414628e-13
## cg09296001 0.6612113 756.4304 1.565768e-18 1.778163e-13
## cg17301223 0.7292316 721.7549 2.586347e-18 2.202886e-13
## cg22697045 0.4400964 677.6529 5.070931e-18 3.250941e-13
## cg06319475 0.6382937 669.9864 5.725258e-18 3.250941e-13

取交集看看:

dmpM <- rownames(myDMP.m[myDMP.m$qval < 0.01,]) # 219677
dmpB <- rownames(myDMP.b[myDMP.b$qval < 0.01,]) # 190867

v1 <- VennDiagram::venn.diagram(x = list(dmpM=dmpM,dmpB=dmpB), 
                                filename = NULL,
                                fill=c("#0073C2FF","#EFC000FF")
                                )

cowplot::plot_grid(v1)
unnamed-chunk-31-152516878

重合率还是非常高的!

然后是DMR:

design <- model.matrix(~pd$Sample_Type)

# 加速
library(doParallel)
registerDoParallel(cores = 6)
myDMR <- bumphunter(mSetSqFlt,
                    design = design,
                    coef = 2# design的第2列
                    cutoff = 0.2,
                    nullMethod = "bootstrap",
                    type = "Beta"
                    )
## [bumphunterEngine] Parallelizing using 6 workers/cores (backend: doParallelSNOW, version: 1.0.17).
## [bumphunterEngine] Computing coefficients.
## [bumphunterEngine] Finding regions.
## [bumphunterEngine] Found 84939 bumps.

dim(myDMR$table)
## [1] 84939    10

head(myDMR$table)
##         chr     start       end      value      area cluster indexStart
## 75901 chr10 118030848 118034031 -0.3772173 12.070953   55516     442352
## 78312 chr16  51183988  51186266 -0.3608858 11.548347  147315     629634
## 82985  chr6  29521013  29521803 -0.3570706 11.069188  326737     268459
## 75506 chr10   7450112   7453507 -0.4819137 10.120187   40434     415054
## 82452  chr5 127872767 127875163 -0.3819865  8.021716  312453     240183
## 81895  chr4  96469286  96471143 -0.3592760  7.904073  290890     202036
##       indexEnd  L clusterL
## 75901   442383 32       33
## 78312   629665 32       36
## 82985   268489 31       35
## 75506   415074 21       27
## 82452   240203 21       25
## 81895   202057 22       26

最后是block,这个网络上的教程非常少,最后还是查看了源码才知道怎么搞。

首先需要用cpgCollapse()函数得到一个cluster,然后就可以用blockFinder()计算差异block了。

cluster <- cpgCollapse(mSetSqFlt)
## [cpgCollapse] Creating annotation.
## [cpgCollapseAnnotation] Clustering islands and clusters of probes.
## [cpgCollapseAnnotation] Computing new annotation.
## [cpgCollapseAnnotation] Defining blocks.
## [cpgCollapse] Collapsing data
## ...........
## .............

myblock <- blockFinder(cluster$object,
                       design = design,
                       what = "Beta",
                       cutoff = 0.2,
                       nullMethod = "bootstrap")
## [bumphunterEngine] Parallelizing using 6 workers/cores (backend: doParallelSNOW, version: 1.0.17).
## [bumphunterEngine] Computing coefficients.
## [bumphunterEngine] Smoothing coefficients.
## [bumphunterEngine] Finding regions.
## [bumphunterEngine] Found 1404 bumps.
dim(myblock$table)
## [1] 1404   10

head(myblock$table)
##        chr     start       end     value     area cluster indexStart indexEnd
## 206   chr2 217653964 218570889 0.2229784 38.35228      19      67800    67975
## 1248 chr15  60965059  61717754 0.2346791 25.81470     138     316674   316792
## 961  chr11   4936642   5510732 0.2422221 25.19110     112     244131   244234
## 541   chr5 157682514 158448438 0.2189335 24.95841      46     136911   137024
## 811   chr8  92568908  93738204 0.2232051 24.32935      76     198321   198437
## 789   chr8  68969455  70246427 0.2687594 22.84454      73     196345   196434
##        L clusterL
## 206  172     6565
## 1248 110     6877
## 961  104     3462
## 541  114     9177
## 811  109     2305
## 789   85     2351

注释

可以直接通过getAnnotation()函数直接获得,还是很方便的,但是在ChAMP中是自动给你添加的,真的是考虑周到。

annoMset <- getAnnotation(mSetSqFlt)

dim(annoMset)
## [1] 786477     46
names(annoMset) 
##  [1] "chr"                                  
##  [2] "pos"                                  
##  [3] "strand"                               
##  [4] "Name"                                 
##  [5] "AddressA"                             
##  [6] "AddressB"                             
##  [7] "ProbeSeqA"                            
##  [8] "ProbeSeqB"                            
##  [9] "Type"                                 
## [10] "NextBase"                             
## [11] "Color"                                
## [12] "Probe_rs"                             
## [13] "Probe_maf"                            
## [14] "CpG_rs"                               
## [15] "CpG_maf"                              
## [16] "SBE_rs"                               
## [17] "SBE_maf"                              
## [18] "Islands_Name"                         
## [19] "Relation_to_Island"                   
## [20] "Forward_Sequence"                     
## [21] "SourceSeq"                            
## [22] "UCSC_RefGene_Name"                    
## [23] "UCSC_RefGene_Accession"               
## [24] "UCSC_RefGene_Group"                   
## [25] "Phantom4_Enhancers"                   
## [26] "Phantom5_Enhancers"                   
## [27] "DMR"                                  
## [28] "X450k_Enhancer"                       
## [29] "HMM_Island"                           
## [30] "Regulatory_Feature_Name"              
## [31] "Regulatory_Feature_Group"             
## [32] "GencodeBasicV12_NAME"                 
## [33] "GencodeBasicV12_Accession"            
## [34] "GencodeBasicV12_Group"                
## [35] "GencodeCompV12_NAME"                  
## [36] "GencodeCompV12_Accession"             
## [37] "GencodeCompV12_Group"                 
## [38] "DNase_Hypersensitivity_NAME"          
## [39] "DNase_Hypersensitivity_Evidence_Count"
## [40] "OpenChromatin_NAME"                   
## [41] "OpenChromatin_Evidence_Count"         
## [42] "TFBS_NAME"                            
## [43] "TFBS_Evidence_Count"                  
## [44] "Methyl27_Loci"                        
## [45] "Methyl450_Loci"                       
## [46] "Random_Loci"

内容很全,染色体、起始位置、基因名字等都有了,有了这些东西就够了。

annoMset_subset <- annoMset[,c("chr",
                               "Name",
                               "Relation_to_Island",
                               "UCSC_RefGene_Name"
                               )]

head(annoMset_subset)
## DataFrame with 6 rows and 4 columns
##                    chr        Name Relation_to_Island UCSC_RefGene_Name
##            <character> <character>        <character>       <character>
## cg26928153        chr1  cg26928153            OpenSea           DDX11L1
## cg16269199        chr1  cg16269199            OpenSea           DDX11L1
## cg13869341        chr1  cg13869341            OpenSea            WASH5P
## cg02404219        chr1  cg02404219            OpenSea             OR4F5
## cg04098293        chr1  cg04098293            OpenSea                  
## cg16382250        chr1  cg16382250            OpenSea

简单!有了这些内容,后面的各种分析就水到渠成了!

参考资料

[1]

cross-reactive: http://master.bioconductor.org/packages/release/workflows/vignettes/methylationArrayAnalysis/inst/doc/methylationArrayAnalysis.html#ref-Chen2013





获取更多信息,欢迎加入🐧QQ交流群:613637742


医学和生信笔记,专注R语言在临床医学中的使用、R语言数据分析和可视化。主要分享R语言做医学统计学、meta分析、网络药理学、临床预测模型、机器学习、生物信息学等。


往期推荐



单细胞入门之细胞类型鉴定

单细胞入门之多样本整合

单细胞入门之Seurat标准流程

什么?不做单细胞也能分析细胞类群和免疫浸润?

在?B站综合排序第一的单细胞课程不来学?

R语言和医学统计学(合辑)

R语言机器学习R包:mlr3(合辑)

二分类资料的DCA决策曲线分析

生存资料的决策曲线分析DCA

只会logistic和cox的决策曲线?来看看适用于一切模型的DCA!


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存