Cell Biosci 综述︱唐铁山团队评述染色质重塑在神经发育和神经退行中的作用、机制及小分子调控
1. 染色质组分的共价修饰
图1 染色质重塑调控机制的总结
图3 染色质重塑在外周神经系统发育过程中的作用机制
染色质重塑在神经发育过程中发挥着重要作用,若其发生异常会导致基因组的异常表达,从而引发神经相关疾病。据报道称,在阿尔兹海默症(Alzheimer’s disease,AD)病人中,组蛋白去乙酰化酶(HDACs)的表达发生显著改变,可能是影响神经退行病程进展的原因之一。本综述总结了染色质重塑异常(主要聚焦在组蛋白修饰)在多种神经退行性疾病,如AD、帕金森疾病(Parkinson’s disease,PD)、亨廷顿疾病(Huntington’s disease,HD)以及肌萎缩性侧索硬化症(Amyotrophic lateral sclerosis,ALS)等的病理发生中的作用,为揭示这些疾病的机理提供了理论基础,并有助于推动相关疾病靶向药物的研发。
目前已有14种靶向染色质重塑因子的小分子表观药物获批上市,多用于癌症治疗。这些药物在神经疾病中的研究较少,且大多处于临床前期阶段。本综述概括了拟进入或已进入临床阶段的用于治疗神经退行性疾病的靶向小分子表观药物,为临床治疗提供借鉴意义。其中以组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACi)为主,其根据结构不同,分为异羟肟酸类(Hydroxamate)、脂肪酸类(Fatty acid)、苯甲酰胺类(Benzamide)、环四肽类(Cyclic tetrapeptide)及其它,这些小分子药物作用于不同的HDAC底物,可延缓多种神经退行的病程。而CTPB作为HAT(p300)的激动剂,用于治疗帕金森疾病。此外,一些HMT与HDM抑制剂也用于AD和PD的治疗,部分已进入临床阶段。
综上所述,染色质重塑是调控基因表达调控的重要机制,对于多种生物学过程的调节至关重要,对于生物遗传具有重要的意义。尽管近年来染色质调控领域已取得了巨大的进展,但重塑的具体机制尚不清楚,未来会是一个持续的研究热点。基因层面技术的进步将有助于进一步揭示染色质重塑在健康或疾病状态下的神经发育中的作用机制。越来越多的证据表明,许多神经退行性疾病与染色质结构异常相关,针对染色质重塑的小分子表观药物的研发也是日新月异。多种小分子表观抑制剂已被证明在治疗神经退行性疾病方面有效。尽管小分子药物的结构决定了其良好的成药性和药代动力学性质,但它们也存在缺乏特异性进而可能引起不良副作用等问题。只有更好的了解了这些小分子药物的作用机制,我们才能研发出高选择性的更安全有效的表观药物。
群备注格式:姓名-单位-研究领域-学位/职称/称号/职位
【1】Microbiome︱陈耀星课题组揭示肠道菌群及其代谢物介导褪黑激素在睡眠剥夺诱导认知障碍中的神经保护作用
【2】Ageing Res Rev 综述︱庆宏课题组聚焦阿尔茨海默病早期海马体相关GABA能神经网络损伤
【3】JNC︱空间模拟条件下抑郁大鼠海马和皮质中的miR-455-3p差异表达在NR2B-PSD-95-nNOS复合体中的调控作用
【4】Transl Psychiatry︱张力团队揭示运动通过FMRP-mTOR通路发挥抗焦虑效果
【5】Cell Genomics︱杨远号等揭示血细胞特征与神经精神疾病共享遗传结构的广泛图谱, 助力神经精神疾病的早期诊断和治疗
【6】Glia︱肖岚/叶剑/梅峰课题组揭示新生髓鞘生成不足是引起早期糖尿病视觉功能障碍的重要因素
【7】STAR Protocols︱胡宝利课题组发表利用原位神经胶质瘤小鼠模型评估免疫治疗功效的实验方案
【8】专家点评 Mol Psychiatry︱冯杜团队发现ATP9A是注意缺陷和多动障碍和智力障碍的全新致病基因
【1】NeuroAI 读书会启动︱探索神经科学与人工智能的前沿交叉领域
往期科研培训课程精选【1】宏基因组与代谢组/脂质组学R软件数据可视化研讨会(2月18-19日,腾讯在线会议)
【2】单细胞测序与空间转录组学数据分析研讨会(3月11-12日 腾讯在线会议)
【3】高分SCI文章与标书作图(暨AI软件作图)研讨会(2月25-26日 ,腾讯在线会议)
学习资料【1】收藏+免费︱脑科学视频课程 & 9大手术造模和细胞分子科研手册资料
参考文献(上下滑动查看)
2. Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010; 463:474-84.3. Bartholomew B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu Rev Biochem. 2014; 83:671-96.4. Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell. 2010; 38:590-602.5. Clapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Mol Cell. 2016; 62:453-61.6. Eustermann S, Schall K, Kostrewa D, Lakomek K, Strauss M, Moldt M, Hopfner KP. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature. 2018; 556:386-90.7. Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell. 2011; 144:200-13.8. Brahma S, Udugama MI, Kim J, Hada A, Bhardwaj SK, Hailu SG, Lee TH, Bartholomew B. INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat Commun. 2017; 8:15616.9. Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel). 2019; 11.10. Quan J, Yusufzai T. The tumor suppressor chromodomain helicase DNA-binding protein 5 (CHD5) remodels nucleosomes by unwrapping. J Biol Chem. 2014; 289:20717-26.11. Paridaen JT, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 2014; 15:351-64.12. Akizu N, Martinez-Balbas MA. EZH2 orchestrates apicobasal polarity and neuroepithelial cell renewal. Neurogenesis (Austin). 2016; 3:e1250034.13. Pappa S, Padilla N, Iacobucci S, Vicioso M, Alvarez de la Campa E, Navarro C, Marcos E, de la Cruz X, Martinez-Balbas MA. PHF2 histone demethylase prevents DNA damage and genome instability by controlling cell cycle progression of neural progenitors. Proc Natl Acad Sci U S A. 2019; 116:19464-73.14. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, Nott A, Liu CY, Watson LA, Tsai LH. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci. 2016; 19:1477-88.15. Yip DJ, Corcoran CP, Alvarez-Saavedra M, DeMaria A, Rennick S, Mears AJ, Rudnicki MA, Messier C, Picketts DJ. Snf2l regulates Foxg1-dependent progenitor cell expansion in the developing brain. Dev Cell. 2012; 22:871-8.16. Bachmann C, Nguyen H, Rosenbusch J, Pham L, Rabe T, Patwa M, et al. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet. 2016; 12:e1006274.17. Tapias A, Zhou ZW, Shi Y, Chong Z, Wang P, Groth M, et al. Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell. 2014; 14:632-43.18. Jobe EM, Zhao X. DNA Methylation and Adult Neurogenesis. Brain Plast. 2017; 3:5-26.19. Nitarska J, Smith JG, Sherlock WT, Hillege MM, Nott A, Barshop WD, et al. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development. Cell Rep. 2016; 17:1683-98.20. Zhang Z, Manaf A, Li Y, Perez SP, Suganthan R, Dahl JA, Bjoras M, Klungland A. Histone Methylations Define Neural Stem/Progenitor Cell Subtypes in the Mouse Subventricular Zone. Mol Neurobiol. 2020; 57:997-1008.21. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature. 2009; 458:529-33.22. Maitra S, Khandelwal N, Kootar S, Sant P, Pathak SS, Reddy S, et al. Histone Lysine Demethylase JMJD2D/KDM4D and Family Members Mediate Effects of Chronic Social Defeat Stress on Mouse Hippocampal Neurogenesis and Mood Disorders. Brain Sci. 2020; 10.23. Reddy NC, Majidi SP, Kong L, Nemera M, Ferguson CJ, Moore M, et al. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun. 2021; 12:5702.24. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007; 30:209-33.25. Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013; 155:894-908.26. Weng YL, An R, Cassin J, Joseph J, Mi R, Wang C, et al. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron. 2017; 94:337-46 e6.27. Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lotscher P, et al. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci. 2011; 14:429-36.28. Polanetzki V, Frob F, Baroti T, Schimmel M, Tamm ER, Wegner M. Role of the Pbrm1 subunit and the PBAF complex in Schwann cell development. Sci Rep. 2022; 12:2651.29. Anderson KW, Turko IV. Histone post-translational modifications in frontal cortex from human donors with Alzheimer's disease. Clin Proteomics. 2015; 12:26.30. Francis YI, Fa M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J Alzheimers Dis. 2009; 18:131-9.31. Marzi SJ, Leung SK, Ribarska T, Hannon E, Smith AR, Pishva E, et al. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat Neurosci. 2018; 21:1618-27.32. Zheng Y, Liu A, Wang ZJ, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019; 142:787-807.33. Gebremedhin KG, Rademacher DJ. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex. Neurosci Lett. 2016; 627:121-5.34. Chen K, Bennett SA, Rana N, Yousuf H, Said M, Taaseen S, Mendo N, Meltser SM, Torrente MP. Neurodegenerative Disease Proteinopathies Are Connected to Distinct Histone Post-translational Modification Landscapes. ACS Chem Neurosci. 2018; 9:838-48.35. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci. 2011; 31:16619-36.36. Tibshirani M, Zhao B, Gentil BJ, Minotti S, Marques C, Keith J, et al. Dysregulation of chromatin remodelling complexes in amyotrophic lateral sclerosis. Hum Mol Genet. 2017; 26:4142-52.
本文完