撰文︱李亚东
编辑︱王思珍
成年哺乳动物海马齿状回(dentate gyrus,DG)存在神经发生,持续产生新生神经元(adult-born neurons,ABNs)。这些ABNs在出生后4-8周被认为是活性和突触可塑性增强的关键时期。在此期间,海马神经环路可能被重塑[1-6]。使用啮齿动物模型已经确定了ABNs调节海马依赖的记忆和情感功能的因果作用[7, 8],而ABN的功能障碍也已被证明是导致各种脑疾病相关的认知和情感障碍的原因[9, 10]。尽管尚存争论,近年来使用生物标志物[11-13]、新的免疫组织化学方法对新鲜人脑组织染色[14, 15],以及单细胞RNA测序[11, 16]等方法,越来越多的证据支持人类海马中存在成年神经发生。一般认为,成年人类大脑中存在低水平的海马神经生成,缓慢更新ABNs[11]。但是,如何调控低水平的成年海马神经发生从而改善记忆、情感等功能是领域内长期存在的科学问题。2023年2月21日,北卡罗来纳大学教堂山分校(UNC)宋娟课题组应邀在Current Opinion in Neurobiology 杂志以“Optimizing memory performance and emotional states: multi-level enhancement of adult hippocampal neurogenesis”为题,综述了海马神经发生调控记忆情感功能的最新进展。该综述分别从数量、活性和发育状态三个方面回顾了ABN调控海马功能的研究进展;提出多水平调控ABN能够最大程度改善海马依赖的记忆和情感功能的观点;总结了ABN调控海马局部和全脑网络的神经环路。(拓展阅读:宋娟课题组相关研究进展,详见“逻辑神经科学”报道(点击阅读):Nat Neurosci︱宋娟团队揭示下丘脑环路调控海马神经发生促进记忆提取对抗焦虑样行为)一、ABNs的数量、活性和发育状态调控海马依赖性记忆和情感行为成年海马神经发生是一个动态的过程,ABN的数量、活性和发育状态受运动、丰富环境和抗抑郁药(如氯胺酮)等多种因素的调控[17-19]。综合调控ABN活性和发育状态可能共同促进海马的功能。
1. ABN的数量。早期研究成年海马神经发生的功能主要是操控ABN的数量。毁损实验表明ABN数量对场景分辨[20, 21]、焦虑[22, 23]、抑郁[24]、记忆遗忘[25]、社交记忆识别[26]和奖赏偏好[27]等行为发挥重要作用。敲除促凋亡基因Bax来增加ABN的数量促进场景分辨能力[28, 29],但空间记忆和基础状态下的焦虑、抑郁等海马依赖的行为不受ABN数量的影响[28, 30]。有趣的是,增加神经发生足以减少慢性皮质酮处理诱发的焦虑/抑郁样行为[30];过表达Cdk4/cyclinD1增加神经发生,可以提高空间学习的精确度,但不能提高速度[31]。以上结果表明,增加ABNs的数量可以调控场景辨别、空间精度和压力反应,而不影响空间/场景记忆编码/提取和基础状态下的焦虑/抑郁样行为。1. ABN的活性。光遗传和化学遗传学手段是如今最常见的操控神经元活性的方法。使用光遗传学抑制ABN活性损害空间记忆[5]、场景和位置的区分和记忆巩固[4, 32, 33, 34]。化学遗传学法抑制ABN活性损害了空间和场景记忆的编码[18]、长期记忆的编码和巩固[35],加剧社交挫败后的焦虑行为[23],对抗氟西汀或氯胺酮的抗抑郁作用[19, 36]。以上研究表明,ABN活性对记忆和情感的调控是必要的。然而使用化学遗传法和光遗传法激活ABN产生截然相反的结果。使用化学遗传学法激活ABN促进空间和场景记忆[18],降低焦虑样行为[18, 36],产生类似于氯胺酮的抗抑郁作用[19]。相反,光遗传激活ABN损害场景记忆编码、巩固和提取[4, 34]。化学遗传学与光遗传学激活ABN对行为影响的巨大差异可能是由于两种方法兴奋神经元的模式不同引起的。光遗传激活ABN的频率是10 Hz [4]或20 Hz [34],这远高于ABN的平均放电频率2.3 Hz [32]。因此,对ABN的过度激活可能会破坏海马网络正常节律,从而导致记忆受损。尽管化学遗传学激活ABN引起的放电频率仍有待确定,但化学遗传学激活ABN可能更好地模拟ABN的自然放电模式。此外,化学遗传学激活可能诱发ABN释放神经营养因子等,从而改善学习和记忆能力。2. ABN的发育状态。ABN只能阶段性调节海马依赖的行为[4, 5, 32, 33],因此ABN的发育状态对海马功能至关重要。使用逆转录病毒敲除Disrupted-in-Schizophrenia 1导致ABN加速成熟,损害空间记忆同时产生焦虑/抑郁样行为[37];敲除kainate受体同样导致ABN加速成熟,损害空间辨别能力[38]。相反,敲除Rnd2导致ABN的成熟延迟和存活率下降,但增加焦虑样行为[39];敲除神经干细胞中电压门控钾离子通道Kv1.1导致ABN的发育减缓和数量减少,损害场景记忆[40]。以上研究表明,ABN的适当成熟度对维持正常海马功能是必需的。在ABN调控行为的窗口期(4-8周),促进ABN的发育是否足以改善行为呢?宋娟课题组李亚东等最近的研究表明,通过刺激健康的年轻小鼠乳上核(SuM)来提高ABN的成熟度、增加ABN的数量,并不能改善空间和场景记忆,也不改变焦虑样行为[18]。然而,化学遗传学法激活这些SuM刺激过的ABN则能促进空间和场景记忆,对抗焦虑样行为[18]。这表明,ABN的成熟度提高、数量增加对海马依赖的行为是必需的,但单纯提高ABN的成熟度是否足以改变以上行为还有待确定。总之,操控ABNs的不同方面(数量、发育状态或活性)调控海马依赖性行为,作用不尽相同(图1)。通过增加ABN的数量、提高其活性和成熟度来多水平地调控海马神经发生,可能作为改善海马功能的潜在策略。图 1. ABNs的数量、活性和发育状态对海马依赖性记忆和情感行为的不同贡献。ABN发育整合进入海马神经网络,可以重塑海马环路。相比于DG成熟颗粒细胞,出生后4-8周的ABN兴奋性升高的、可塑性增强[1, 2, 4, 5, 32]。这些独特的特性使得ABN在整合海马局部和全脑神经网络中发挥着重要作用。1. ABN的海马和全脑输入。使用狂犬病毒的单突触逆行示踪,研究人员确定了ABNs在成熟期的突触前输入[41, 42]:ABN首先接受来自Hilus Mossy细胞和中间神经元的局部输入,如PV和SST神经元;而后接受皮层下脑区、内嗅皮层(EC)和海马其他亚区的输入。有趣的是,EC、基底前脑和SuM向ABN的输入能够随着外界环境刺激发生相应改变[43-44]。使用电生理方法进一步描绘了ABN的功能输入,PV和SST在发育早期就建立了对ABN的功能突触[45, 46],但这些连接需要几周时间才能达到成熟。但是,ABN与EC的突触连接较低[47]。这种低的EC-ABN连接可能会阻止ABN对大脑皮层活动作出广泛的反应[43]。高中间神经元-ABN连接[46]和低EC-ABN连接[47]共同编码了ABN的稀疏活性。2. ABN对局部海马环路动态的调控。与ABN的突触前输入相比,对ABN的输出研究较少。目前认为,ABN主要与DG/Hilar/CA3中间神经元和CA3锥体细胞形成直接突触连接[6, 48-50]。光遗传研究揭示了ABN在整合到海马网络时如何与这些兴奋性和抑制性神经元形成连接(图2A):ABN首先与DG/Hilar中间神经元(包括PV和SST神经元)形成突触连接,对DG成熟的颗粒细胞提供后反馈抑制[6, 46, 50]。同时,它们还与CA3中间神经元和锥体细胞形成突触连接,对锥体细胞提供前反馈抑制和直接兴奋[5]。由于ABN同时介导抑制和兴奋效应,其对海马不同亚区的整体效应尚不清楚。最近的研究表明,选择性激活ABN增加了海马神经元稀疏放电,而抑制ABN的活动则减少了这种电活动,损害了新物体识别[32]。因此,兴奋ABN可能促进海马的稀疏稀疏放电,增强记忆能力。ABN是否与DG颗粒细胞形成直接联系仍然难以确定。最近的研究表明,ABN可以与DG 颗粒细胞形成单突触的谷氨酸联系[51]。但ABN和颗粒细胞之间的这些谷氨酸连接是兴奋性的还是抑制性的,取决于ABN所接受的输入。在处理情景信息时,LEC兴奋ABN,后者通过代谢型谷氨酸受体抑制成熟的颗粒细胞;在处理空间信息时,MEC兴奋ABN,后者通过离子型NMDA受体兴奋成熟的颗粒细胞[51]。这就提示:ABN可以不依赖中间神经元,直接调控颗粒细胞的活性(图2A)。此外,调控ABN的数量还可以通过整合海马原有的突触结构对海马网络产生影响[52-54]。3. ABN对全脑网络的动态调控。ABNs通过投射DG/hilar/CA3可能影响全脑网络(图2B)。抑制ABN会影响双侧海马的活性[33],其机制可能是通过对侧投射的hilar Mossy细胞或CA3锥体细胞。此外,DG/hilar SST中间神经元向基底前脑和EC发送长程投射[55, 56],CA3 锥体细胞直接支配外侧隔核SST神经元[57]。因此,ABN可能通过中间神经元和CA3 锥体细胞来调节这些远端脑区的活性。此外,ABNs还可以通过ABN-CA3-CA1环路来调节CA1的活性。CA1与诸多输出脑区有着广泛的联系[58-60],包括(但不限于)外侧隔核、下丘脑前部、杏仁核、前额叶皮层和终端纹床核(图2B)。因此,调节ABN可能通过CA1的下游脑区来影响全脑网络。除了ABN与其下游脑区之间的直接解剖学联系外,ABN还可以同没有直接联系的脑区,如岛叶皮层,产生功能连接[61]。损害ABN导致在新位置识别过程中CA3、CA1以及岛叶皮层的活性异常[62]。这些结果表明,ABN的活性和成熟状态可以影响全脑的网络活性,调节空间记忆。近年来,人们对成年海马神经发生在认知和情感行为中的作用,以及它在不同行为状态下对海马局部和全脑网络动态的影响越来越感兴趣。该文回顾了近年来使用不同方法操纵ABN数量、活性和发育状态的研究,并提出不同的ABN操纵模式会对海马功能产生显著的差异化影响。因此,通过增加ABN的数量、提高其活性和调控其发育状态来多层次地调控海马神经发生可能成为提高海马功能的潜在策略。目前的研究中仍有一些问题。首先,ABN的化学遗传学操作对海马局部和全脑网络动态的贡献仍然是未知的。鉴于ABN的化学遗传学与光遗传学操作所引起的不同行为效果,ABN的化学遗传学操作有可能产生不同的环路效应。其次,ABN对认知和情感行为都有贡献,这些行为被认为分别与背侧和腹侧海马的功能有关。然而,背侧与腹侧海马ABN如何对局部和全脑网络的活性产生影响仍是未知。由于背侧和腹侧海马输出下游不同[58],ABN在背侧和腹侧海马有可能调节不同的局部和全脑网络。此外,操控一小部分ABN就足以明显改变海马依赖性行为[18],但调控行为的局部和全脑环路机制仍有待解析。最后,在人类的多种病理情况下,如癫痫[12]、神经退行性疾病[11, 14, 15]和严重抑郁症[63],都有成年海马神经发生受损的报道。多水平调控ABN是否能应用于这些病症的治疗以实现功能恢复仍有待确定。总之,未来对这些开放性问题的研究将丰富我们对成年海马神经发生过程的认知,同时为在健康和疾病状态下调控成年海马神经发生改善行为提供转化基础。原文链接:https://doi.org/10.1016/j.conb.2023.102693UNC宋娟博士为论文通讯作者,博士后助理研究员李亚东和罗艳佳为共同第一作者。该项目得到NIH和BBRF经费支持。Song lab合照: 宋娟(左一),李亚东(左三),罗艳佳(左五)。(照片提供自:Song lab)
学术会议预告【1】会议通知︱第六届中国神经科学学会神经退行性疾病分会年会会议通知
【2】会议通知更新︱小胶质细胞生理与病理功能专题国际研讨会
参考文献(上下滑动查看)
1.Schmidt-Hieber, C., P. Jonas, and J. Bischofberger, Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 2004. 429(6988): p. 184-7.
2. Ge, S., et al., A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 2007. 54(4): p. 559-66.3. Marin-Burgin, A., et al., Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 2012. 335(6073): p. 1238-42.4. Danielson, N.B., et al., Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron, 2016. 90(1): p. 101-12.5. Gu, Y., et al., Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 2012. 15(12): p. 1700-6.6. Temprana, S.G., et al., Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron, 2015. 85(1): p. 116-130.7. Miller, S.M. and A. Sahay, Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci, 2019. 22(10): p. 1565-1575.8. Anacker, C. and R. Hen, Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci, 2017. 18(6): p. 335-346.9. Christian, K.M., H. Song, and G.L. Ming, Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 2014. 37: p. 243-62.10. Bao, H. and J. Song, Treating Brain Disorders by Targeting Adult Neural Stem Cells. Trends Mol Med, 2018. 24(12): p. 991-1006.11. Zhou, Y., et al., Molecular landscapes of human hippocampal immature neurons across lifespan. Nature, 2022. 607(7919): p. 527-533.12. Ammothumkandy, A., et al., Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci, 2022. 25(4): p. 493-503.13. Spalding, K.L., et al., Dynamics of hippocampal neurogenesis in adult humans. Cell, 2013. 153(6): p. 1219-1227.14. Moreno-Jimenez, E.P., et al., Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med, 2019. 25(4): p. 554-560.15. Terreros-Roncal, J., et al., Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science, 2021. 374(6571): p. 1106-1113.16. Wang, W., et al., Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res, 2022. 32(8): p. 729-743.17. Shevtsova, O., et al., Early-Age Running Enhances Activity of Adult-Born Dentate Granule Neurons Following Learning in Rats. Eneuro, 2017. 4(4).18. Li, Y.D., et al., Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci, 2022. 25(5): p. 630-645.19. Rawat, R., et al., Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat Commun, 2022. 13(1): p. 2650.20. Clelland, C.D., et al., A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 2009. 325(5937): p. 210-3.21. Nakashiba, T., et al., Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 2012. 149(1): p. 188-201.22. Snyder, J.S., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 2011. 476(7361): p. 458-61.23. Anacker, C., et al., Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 2018. 559(7712): p. 98-102.24. Santarelli, L., et al., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003. 301(5634): p. 805-9.25. Akers, K.G., et al., Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science, 2014. 344(6184): p. 598-602.26. Cope, E.C., et al., Adult-Born Neurons in the Hippocampus Are Essential for Social Memory Maintenance. eNeuro, 2020. 7(6).27. Seib, D.R., et al., Hippocampal neurogenesis promotes preference for future rewards. Mol Psychiatry, 2021. 26(11): p. 6317-6335.28. Sahay, A., et al., Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 2011. 472(7344): p. 466-70.29. Besnard, A. and A. Sahay, Enhancing adult neurogenesis promotes contextual fear memory discrimination and activation of hippocampal-dorsolateral septal circuits. Behav Brain Res, 2021. 399: p. 112917.30. Hill, A.S., A. Sahay, and R. Hen, Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacology, 2015. 40(10): p. 2368-78.31. Berdugo-Vega, G., et al., Adult-born neurons promote cognitive flexibility by improving memory precision and indexing. Hippocampus, 2021. 31(10): p. 1068-1079.32. McHugh, S.B., et al., Adult-born dentate granule cells promote hippocampal population sparsity. Nat Neurosci, 2022.33. Zhuo, J.M., et al., Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. Elife, 2016. 5.34. Kumar, D., et al., Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory Consolidation. Neuron, 2020. 107(3): p. 552-565 e10.35. Lods, M., et al., Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nat Commun, 2021. 12(1): p. 1778.36. Tunc-Ozcan, E., et al., Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun, 2019. 10(1): p. 3768.37. Zhou, M., et al., mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 2013. 77(4): p. 647-54.38. Zhu, Y., J.N. Armstrong, and A. Contractor, Kainate receptors regulate the functional properties of young adult-born dentate granule cells. Cell Rep, 2021. 36(12): p. 109751.39. Kerloch, T., et al., The atypical Rho GTPase Rnd2 is critical for dentate granule neuron development and anxiety-like behavior during adult but not neonatal neurogenesis. Mol Psychiatry, 2021. 26(12): p. 7280-7295.40. Lin King, Y.H., et al., Kv1.1 preserves the neural stem cell pool and facilitates neuron maturation during adult hippocampal neurogenesis. Proc Natl Acad Sci U S A, 2022. 119(22): p. e2118240119.41. Vivar, C., et al., Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun, 2012. 3: p. 1107.42. Deshpande, A., et al., Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A, 2013. 110(12): p. E1152-61.43. Bergami, M., et al., A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron, 2015. 85(4): p. 710-7.44. McAvoy, K.M., et al., Modulating Neuronal Competition Dynamics in the Dentate Gyrus to Rejuvenate Aging Memory Circuits. Neuron, 2016. 91(6): p. 1356-1373.45. Kang, E., et al., Interplay between a Mental Disorder Risk Gene and Developmental Polarity Switch of GABA Action Leads to Excitation-Inhibition Imbalance. Cell Rep, 2019. 28(6): p. 1419-1428 e3.46. Groisman, A.I., S.M. Yang, and A.F. Schinder, Differential Coupling of Adult-Born Granule Cells to Parvalbumin and Somatostatin Interneurons. Cell Rep, 2020. 30(1): p. 202-214 e4.47. Dieni, C.V., et al., Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun, 2016. 7: p. 11313.48. Toni, N., et al., Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 2008. 11(8): p. 901-7.49. Faulkner, R.L., et al., Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci U S A, 2008. 105(37): p. 14157-62.50. Drew, L.J., et al., Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus, 2016. 26(6): p. 763-78.51. Luna, V.M., et al., Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science, 2019. 364(6440): p. 578-+.This study proposes an unconventional model that adult-born neurons can directly modulate GC activity through glutamatergic connections without going through local interneurons.52.Lacefield, C.O., et al., Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus, 2012. 22(1): p. 106-16.53.Ikrar, T., et al., Adult neurogenesis modifies excitability of the dentate gyrus. Front Neural Circuits, 2013. 7: p. 204.54.Adlaf, E.W., et al., Correction: Adult-born neurons modify excitatory synaptic transmission to existing neurons. Elife, 2022. 11.55.Melzer, S., et al., Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science, 2012. 335(6075): p. 1506-10.56.Yuan, M., et al., Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. Elife, 2017. 6.57.Besnard, A., et al., Dorsolateral septum somatostatin interneurons gate mobility to calibrate context-specific behavioral fear responses. Nat Neurosci, 2019. 22(3): p. 436-446.58.Fanselow, M.S. and H.W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 2010. 65(1): p. 7-19.59.Gergues, M.M., et al., Circuit and molecular architecture of a ventral hippocampal network. Nat Neurosci, 2020. 23(11): p. 1444-1452.60.Cenquizca, L.A. and L.W. Swanson, Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat. J Comp Neurol, 2006. 497(1): p. 101-14.61.Ghaziri, J., et al., Subcortical structural connectivity of insular subregions. Sci Rep, 2018. 8(1): p. 8596.62.Bao, H., et al., Dysregulation of hippocampal adult-born immature neurons disrupts a brain-wide network for spatial memory. bioRxiv, 2020.63.Lucassen, P.J., et al., Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology, 2010. 58(6): p. 940-9.