Nat Commun︱叶克强团队揭示ApoE4和FSH协同诱发阿尔兹海默症的机制
撰文︱叶克强,王蒙蒙
尽管性别对AD流行病学的影响目前是深入研究的主题,但性别特异性病理性AD表型的概念在很大程度上尚未被探索。在本研究中,结果表明FSH和ApoE4额外激活神经元C/EBPβ/AEP信号传导(图1)。长期以来,人们认为FSH在性腺组织中发挥作用,主要局限于睾丸中的支持细胞和卵巢中的颗粒细胞;而其同源受体FSHR在多种性腺外组织中表达(包括内皮细胞、单核细胞、发育中的胎盘、骨骼和脂肪)[29]。作者已经证明FSHR在大脑中的神经元中表达[26]。为了评估FSH升高是否加速AD病理的发生,作者对年轻的雄性和雌性ApoE4 TR小鼠都给予FSH,并发现FSH激活C/EBPβ/AEP信号传导,与载体对照相比,显著促进两性大脑中的NFT病理(图2)。值得注意的是,这些作用选择性地发生在ApoE4而不是ApoE3 TR小鼠身上(图3)。此外,采用卵巢切除术来提高ApoE4 TR小鼠的FSH水平,并揭示了相同的可证明的AD病理,这些病理通过其特异性抗体中和FSH而被有力地消除(图4和5)。因此,FSH给药会严重损害雄性和雌性小鼠的认知功能,而抗FSH治疗可有效改善卵巢切除诱导的认知障碍(图4和5)。值得注意的是,OVX小鼠的游泳速度与其他组略有不同。先前的研究表明,更年期过渡使女性肌肉力量和运动功能早期下降。肌肉抽搐力增强与FSH水平呈负相关(Pesonen等人,2021,21133)。与月经暂停的女性一样,OVX雌性小鼠表现出运动功能受损,因为游泳速度异常低于假手术组或OVX-FSH-Ab组(图5I和6J)。可以想象,异常的学习行为曲线可能与奇怪的运动功能障碍有关,而运动功能障碍与FSH水平升高有关。此外,为了消除雌激素缺乏的潜在影响,OVX处理的小鼠补充外源性E2,以与Sham对照相比保持相似的E2水平。在这些条件下,由于垂体的E2反馈,内源性FSH水平也稳定。采用这种方法,作者可以在不改变E2水平的情况下通过外源性FSH来控制FSH水平。作者数据支持OVX诱导的FSH而非雌激素缺乏介导C/EBPβ/AEP信号传导,归因于ApoE4 TR小鼠的AD发病机制(图6)。不同来源的ApoE4是否对FSH对AD病理的额外影响,结果表明神经元中的ApoE对于FSH对AD病理的增强影响要重要得多(图7)。
总之,本文研究结果提供了证据,支持FSH和ApoE4通过激活C/EBPβ/AEP信号通路共同介导女性AD的发病机制。
原文链接:https://doi.org/10.1038/s41467-023-42282-7
转载须知:“逻辑神经科学”特邀稿件,且作者授权发布;本内容著作权归作者和“逻辑神经科学”共同所有;欢迎个人转发分享,未经授权禁止转载,违者必究。
(注:不按要求格式备注,则不通过好友申请)
1, Neu, S. C. et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol. 74,1178–1189 (2017).
2, Taneja, C. et al. FSH-metabolic circuitry and menopause. J. Mol. Endocrinol. 63, R73-R80 (2019).
3, Randolph, J. F. Jr. et al. Reproductive hormones in the early meno- pausal transition: relationship to ethnicity, body size, and meno- pausal status. J. Clin. Endocrinol. Metab. 88, 1516–1522 (2003).
4. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).
5. Liu, P. et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546, 107–112 (2017).
6. Zhu, L. L. et al. Blocking antibody to the beta-subunit of FSH pre- vents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl. Acad. Sci. USA 109, 14574–14579 (2012).
7. Zaidi, M. et al. FSH, bone mass, body fat, and biological aging. Endocrinology 159, 3503–3514 (2018).
8. Bove, R. et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 82, 222–229 (2014).
9. Short, R. A., Bowen, R. L., O’Brien, P. C. & Graff-Radford, N. R. Ele- vated gonadotropin levels in patients with Alzheimer disease. Mayo Clin. Proc. 76, 906–909 (2001).
10. Georgakis, M. K., Beskou-Kontou, T., Theodoridis, I., Skalkidou, A. & Petridou, E. T. Surgical menopause in association with cognitive function and risk of dementia: a systematic review and meta- analysis. Psychoneuroendocrinology 106, 9–19 (2019).
11. Rocca, W. A. et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before meno- pause. Neurology 69, 1074–1083 (2007).
12. Rocca, W. A., Grossardt, B. R., Shuster, L. T. & Stewart, E. A. Hys- terectomy, oophorectomy, estrogen, and the risk of dementia. Neurodegener. Dis. 10, 175–178 (2012).
13. Greenbaum, L. E. et al. CCAAT enhancer- binding protein beta is required for normal hepatocyte proliferation in mice after partial hepatectomy. J. Clin. Invest. 102, 996–1007 (1998).
14. Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365, 561–575 (2002).
15, Cortes-Canteli, M. et al. CCAAT/enhancer binding protein beta deficiency provides cerebral protection following excitotoxic injury. J. Cell Sci. 121, 1224–1234 (2008).
16. Lukiw, W. J. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem. Res. 29, 1287–1297 (2004).
17. Li, R., Strohmeyer, R., Liang, Z., Lue, L. F. & Rogers, J. CCAAT/ enhancer binding protein delta (C/EBPdelta) expression and ele- vation in Alzheimer’s disease. Neurobiol. Aging 25, 991–999 (2004).
18. Ramberg, V., Tracy, L. M., Samuelsson, M., Nilsson, L. N. & Iverfeldt, K. The CCAAT/enhancer binding protein (C/EBP) delta is differently regulated by fibrillar and oligomeric forms of the Alzheimer amyloid-beta peptide. J. Neuroinflamm. 8, 34 (2011).
19. Wang, Z. H. et al. C/EBP beta regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease. Nat. Commun. 9, 1784 (2018).
20. Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat.Med. 20, 1254–1262 (2014).
21. Zhang, Z. et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Com-mun. 6, 8762 (2015).
22. Wang, H., Liu, X., Chen, S. & Ye, K. Spatiotemporal activation of theC/EBPbeta/delta-secretase axis regulates the pathogenesis of Alz- heimer’s disease. Proc. Natl. Acad. Sci. USA 115,E12427–E12434 (2018).
23. Silverman, E., Eimerl, S. & Orly, J. CCAAT enhancer-binding protein beta and GATA-4 binding regions within the promoter of the ster- oidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J. Biol. Chem. 274,17987–17996 (1999).
24. Sirois, J. & Richards, J. S. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Evidence for the role of a cis-acting C/EBP beta promoter element. J. Biol. Chem. 268, 21931–21938 (1993).
25. LaVoie, H. A., Singh, D. & Hui, Y. Y. Concerted regulation of the porcine steroidogenic acute regulatory protein gene promoter activity by follicle-stimulating hormone and insulin-like growth factor I in granulosa cells involves GATA-4 and CCAAT/enhancer binding protein beta. Endocrinology 145, 3122–3134 (2004).
26. Bowen, R. L., Isley, J. P. & Atkinson, R. L. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J. Neuroendocrinol. 12, 351–354 (2000).
27. Xiong, J. et al. FSH blockade improves cognition in mice with Alz- heimer’s disease. Nature 603, 470–476 (2022).
28. Yaffe, K., Sawaya, G., Lieberburg, I. & Grady, D. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. JAMA 279, 688–695 (1998).
29, Wang, Z. H. et al. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic activity, provoking pathogenesis in Alzhei- mer’s disease. Mol Cell 67, 812–825.e815 (2017).
本文完