Mol Neurobiol 综述︱P2X7受体:阿尔茨海默病的新靶点
撰文︱黄强
一般认为,淀粉样β蛋白假说和Tau蛋白假说是阿尔茨海默病(Alzheimer's disease,AD)发病机制的主要解释。然而,阿尔茨海默病的病理特征并不仅仅表现为β淀粉样蛋白沉积、Tau蛋白和神经纤维缠结。现在的研究发现,突触丢失,炎症,线粒体功能障碍和氧化应激也参与阿尔兹海默症的发病机制。因此,现在普遍认为AD是一种涉及不同病理过程的多因素神经退行性疾病。然而,阿尔茨海默病的发病机制和病因尚不完全清楚也没有有效的治疗方法。因此,迫切需要找到新的治疗途径来减少疾病的进展。
嘌呤能受体长期以来在神经退行性疾病中受到关注。P2X7受体是嘌呤能受体的家族成员。它在神经系统中广泛表达,并参与多种神经功能。不仅如此研究人员发现P2X7受体参与阿尔兹海默症的多种病理过程。这表明P2X7R可能成为一种新的阿尔茨海默病治疗方法的药物靶点。
2023年11月9日,南昌大学第二附属医院华福洲团队在Molecular Neurobiology期刊上在线发表了题为“P2X7 Receptor: an Emerging Target in Alzheimer's Disease”的最新综述文章。该综述总结了P2X7受体在中枢神经系统中的作用,提出了P2X7受体在阿尔茨海默病发病机制中的潜在作用,在此基础上对P2X7受体作为治疗阿尔兹海默症的治疗靶点做出展望,为今后阿尔兹海默症的研究提供了新方向。(拓展阅读:华福洲课题组往期进展,详见“逻辑神经科学”报道(点击阅读):Neurobiol Dis 综述丨TMEM175:与神经系统疾病相关的溶酶体离子通道;Cell Biosci 综述︱神经胶质细胞中的脂质代谢和储存:在大脑发育和神经退行性疾病中的作用)
一、P2X7R在中枢神经系统中的作用
1.2 P2X7R与神经元
1.3 P2X7R 与 星形胶质细胞
二、 P2X7R在阿尔兹海默症中的作用
AD现在越来越被认为是一种多因素的神经退行性疾病,多种的病理过程都参与AD的发展,包括淀粉样β蛋白沉积、Tau蛋白磷酸化、神经炎症、线粒体功能障碍和突触功能障碍。而P2X7R参与了所有这些过程(图1)。
2.1 P2X7R和淀粉样β蛋白
图2 P2X7R与Aβ的关系。
2.2 P2X7R和Tau蛋白
2.3 P2X7R和炎症
2.4 P2X7R和线粒体功能障碍
2.5 P2X7R和突触功能障碍
2.6 P2X7R作为AD的新诊断工具
三、P2X7R作为治疗AD的靶点
P2X7R通过激活或抑制多种信号通路参与阿尔兹海默症的病理过程。研究发现,多种药物可靶向P2X7R发挥保护作用,改善AD症状。作者列举了多种靶向P2X7R治疗或预防阿尔兹海默症的药物。
四、总结与展望
综上所述,P2X7R在AD中发挥重要作用,参与AD的多种病理生理机制。详细了解P2X7R的作用对于发现治疗神经疾病的新治疗方法至关重要。
目前,尽管许多P2X7R拮抗剂已经开发出来,但仍然存在许多挑战。可穿透中枢神经系统的高选择性有效的P2X7R激动剂和拮抗剂有待进一步探索。重要的是,这些药物的临床应用首先需要对其安全性进行广泛的进一步研究。除了P2X7R拮抗剂治疗外,抑制P2X7R通路也可能是治疗AD的一种新的治疗方法。随着对AD发病机制的进一步探索和药物的进一步开发,P2X7R靶向治疗很可能成为未来一种有前景的新治疗方式。
原文链接:https://doi.org/10.1007/s12035-023-03699-9
(照片提供自华福洲团队)
江西省麻醉学重点实验室是江西省麻醉学首个省级平台。经过近几年的建设,逐渐形成以下研究方向:一、聚焦围术期麻醉手术对重要器官影响及机制研究;二、探索麻醉手术对神经认知的影响及机制研究;三、探索浅低温、麻醉药物对重要器官功能的影响及机制;四、依托临床,研发围术期医疗器械的研发和转化。采用多组学等探索代谢重编程对心,脑等重要器官炎症免疫的影响及机制。
转载须知:“逻辑神经科学”特邀稿件,且作者授权发布;本内容著作权归作者和“逻辑神经科学”共同所有;欢迎个人转发分享,未经授权禁止转载,违者必究。
逻辑经科学群:“逻辑神经科学”微信群:文献学习
(注:不按要求格式备注,则不通过好友申请)
1. Martínez-Frailes C, Di Lauro C, Bianchi C, de Diego-García L, Sebastián-Serrano Á, Boscá L, Díaz-Hernández M: Amyloid Peptide Induced Neuroinflammation Increases the P2X7 Receptor Expression in Microglial Cells, Impacting on Its Functionality. Frontiers in cellular neuroscience 2019, 13:143.
2. Yuskaitis CJ, Jope RS: Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cellular signalling 2009, 21(2):264-273.
3. Monif M, Reid CA, Powell KL, Smart ML, Williams DA: The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. The Journal of neuroscience : the official journal of the Society for Neuroscience 2009, 29(12):3781-3791.
4. Monif M, Burnstock G, Williams DA: Microglia: proliferation and activation driven by the P2X7 receptor. The international journal of biochemistry & cell biology 2010, 42(11):1753-1756.
5. Takenouchi T, Sugama S, Iwamaru Y, Hashimoto M, Kitani H: Modulation of the ATP-lnduced release and processing of IL-1beta in microglial cells. Critical reviews in immunology 2009, 29(4):335-345.
6. Miras-Portugal MT, Sebastián-Serrano Á, de Diego García L, Díaz-Hernández M: Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. The Journal of neuroscience : the official journal of the Society for Neuroscience 2017, 37(30):7063-7072.
7. Díaz-Hernandez M, del Puerto A, Díaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ, Miras-Portugal MT: Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. Journal of cell science 2008, 121(Pt 22):3717-3728.
8. Carrasquero LM, Delicado EG, Bustillo D, Gutiérrez-Martín Y, Artalejo AR, Miras-Portugal MT: P2X7 and P2Y13 purinergic receptors mediate intracellular calcium responses to BzATP in rat cerebellar astrocytes. Journal of neurochemistry 2009, 110(3):879-889.
9. Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA: P2X7 receptor-mediated release of excitatory amino acids from astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 2003, 23(4):1320-1328.
10. Haass C, Kaether C, Thinakaran G, Sisodia S: Trafficking and proteolytic processing of APP. Cold Spring Harbor perspectives in medicine 2012, 2(5):a006270.
11. Lauretti E, Dincer O, Praticò D: Glycogen synthase kinase-3 signaling in Alzheimer's disease. Biochimica et biophysica acta Molecular cell research 2020, 1867(5):118664.
12. Diaz-Hernandez JI, Gomez-Villafuertes R, León-Otegui M, Hontecillas-Prieto L, Del Puerto A, Trejo JL, Lucas JJ, Garrido JJ, Gualix J, Miras-Portugal MT et al: In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3β and secretases. Neurobiology of aging 2012, 33(8):1816-1828.
13. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I: Tau in Alzheimer disease and related tauopathies. Current Alzheimer research 2010, 7(8):656-664.
14. Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T: Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. Alzheimer's & dementia : the journal of the Alzheimer's Association 2014, 10(4):485-502.
15. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT: Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & dementia (New York, N Y) 2018, 4:575-590.
16. Gehrmann J, Matsumoto Y, Kreutzberg GW: Microglia: intrinsic immuneffector cell of the brain. Brain research Brain research reviews 1995, 20(3):269-287.
17. He Y, Taylor N, Fourgeaud L, Bhattacharya A: The role of microglial P2X7: modulation of cell death and cytokine release. Journal of neuroinflammation 2017, 14(1):135.
18. Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K: P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-α in cultured mouse microglia. Glia 2014, 62(4):592-607.
19. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature immunology 2008, 9(8):857-865.
20. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G: K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 2013, 38(6):1142-1153.
21. Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M et al: Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC biology 2020, 18(1):182.
22. Sörensen A, Blazhenets G, Rücker G, Schiller F, Meyer PT, Frings L: Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data. NeuroImage Clinical 2019, 21:101637.
23. Pfeiffer ZA, Guerra AN, Hill LM, Gavala ML, Prabhu U, Aga M, Hall DJ, Bertics PJ: Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation. Free radical biology & medicine 2007, 42(10):1506-1516.
24. Sekar P, Huang DY, Hsieh SL, Chang SF, Lin WW: AMPK-dependent and independent actions of P2X7 in regulation of mitochondrial and lysosomal functions in microglia. Cell communication and signaling : CCS 2018, 16(1):83.
25. Sarti AC, Vultaggio-Poma V, Falzoni S, Missiroli S, Giuliani AL, Boldrini P, Bonora M, Faita F, Di Lascio N, Kusmic C et al: Mitochondrial P2X7 Receptor Localization Modulates Energy Metabolism Enhancing Physical Performance. Function (Oxford, England) 2021, 2(2):zqab005.
26. Lleó A, Núñez-Llaves R, Alcolea D, Chiva C, Balateu-Paños D, Colom-Cadena M, Gomez-Giro G, Muñoz L, Querol-Vilaseca M, Pegueroles J et al: Changes in Synaptic Proteins Precede Neurodegeneration Markers in Preclinical Alzheimer's Disease Cerebrospinal Fluid. Molecular & cellular proteomics : MCP 2019, 18(3):546-560.
27. Lee HG, Won SM, Gwag BJ, Lee YB: Microglial P2X₇ receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer's disease. Experimental & molecular medicine 2011, 43(1):7-14.
28. Chen X, Hu J, Jiang L, Xu S, Zheng B, Wang C, Zhang J, Wei X, Chang L, Wang Q: Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 2014, 279:94-101.
29. Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, Owen C, Aldea P, Su Y, Hassenstab J et al: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Science translational medicine 2016, 8(338):338ra366.
30. Bhattacharya A: Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Frontiers in pharmacology 2018, 9:30.
31. Ory D, Celen S, Gijsbers R, Van Den Haute C, Postnov A, Koole M, Vandeputte C, Andrés JI, Alcazar J, De Angelis M et al: Preclinical Evaluation of a P2X7 Receptor-Selective Radiotracer: PET Studies in a Rat Model with Local Overexpression of the Human P2X7 Receptor and in Nonhuman Primates. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2016, 57(9):1436-1441.
32. Aivar P, Bianchi C, Di Lauro C, Soria-Tobar L, Alvarez-Castelao B, Calero M, Medina M, Diaz-Hernandez M: TNAP and P2X7R: New Plasma Biomarkers for Alzheimer's Disease. International journal of molecular sciences 2023, 24(13).
本文完