Mater Today Bio 综述丨孙达团队评述大肠杆菌Nissle 1917作为一种可定制的药物递送系统用于疾病诊疗研究进展
大量体外实验证明ECN具有抗菌作用(图2)。ECN可调节IBD[25]引起的肠道菌群紊乱。IBD常伴有肠道菌群紊乱,包括链霉菌(Streptomyces)减少和变形杆菌(Proteus bacteria)增加[18,19]。ECN通过F1绒毛和H1鞭毛附着在肠上皮细胞(IECs)上。同时,局部持续分泌抗生素Journal Pre-proof 5(如细菌素MccM和MccH47)拮抗沙门氏菌[20]。此外,ECN能够产生六种铁载体(即儿茶酚肠霉素及螯合物、肟酸异辛催产素、混合铁载体Y ersenin、ChuA蛋白和EfeU蛋白)与其他细菌竞争铁元素。ECN还能抑制致病菌(如肠出血性大肠杆菌)的定植和毒素(如产志贺毒素大肠杆菌)的产生,从而维持肠道菌群的稳定[21,22]。
为了通过ECN的靶向定殖在肠道中分泌表皮生长因子(EGF),Mira Yu将人类EGF基因插入到ECN的基因组中。在小鼠肠道溃疡模型中,EGF-ECN 在预防和损伤后治疗期间均能减轻肠道溃疡,并促进肠上皮层的修复和隐窝祖细胞的增殖[33]。已经开发出一种来自 EGFECN 的人 EGF 的 TP 结合盒 (ABC) 转运蛋白连接分泌物,以增强 EGF 受体的有益作用,如图4.A所示。
通过将具有抗炎特性的基因 Sj16 插入 pGEX4T-1 并将 SJ16 分泌到 ECN 的细胞外空间,构建了 ECNSj16 菌株。 HlyA 分泌系统通常被克隆到细菌基因组中。为了将外源蛋白分泌到 ECN 细胞外空间,作者使用了 HlyA 分泌系统(包括来自鼠疫耶尔森氏菌的 HlyA、HlyB 和 HlyD 基因)[34,35]。作为 DSS 诱导的肠炎小鼠实验的结果,ECN-Sj16 改变了肠道的微生物群落。通过Ruminococcaceae/Butyrate/Retinoic acid轴,Treg细胞增加,Th17减少,炎症减轻。图4.B 展示了质粒上插入成分的信息和作用方式。
通过构建基因回路,工程化的ECN也可以作为IBD的诊断工具,如图4.C所示。当IBD发生时,体内诱导的一氧化氮合酶(INOS)会产生硝酸盐,而炎症产生的ROS会产生硫代硫酸盐。因此,硝酸盐和硫代硫酸盐可作为炎症性疾病的标志物。为了制备生物传感器,Seung Gyun Woo 等人将由(NarX 和 NarL)和(ThsS 和 ThsR)组成的双组分基因回路克隆到 ECN 的质粒中。通过响应双组分(硝酸盐和硫代硫酸盐)以两个输入与逻辑门的形式调控启动子PyeR和PphsA的转录,最终调控sfgfp(报告基因)的表达,IBD的程度通过检测绿色荧光强度来测量[36]。由于双组分反应,避免了误报,例如摄入一些硝酸盐。因此,生物传感器具有良好的依从性和灵敏的反应,用抗炎剂替代sfgfp的基因也可用于治疗IBD。然而,这仍然需要面对临床问题,需要解决如何快速响应并检测报告产品。
使用合成生物学构建 ECN 中未发现的代谢途径通常用于治疗 IBD。 Xu Yan等人将外源性3-羟基丁酸(3HB)(一种结肠炎治疗剂)合成途径插入ECN基因组,构建缺氧启动子pfnrS的ECNL4,在肠道厌氧环境中最大限度地产生3HB。插入质粒的组分如图4.D所示。 DSS诱导小鼠结肠炎实验表明,该菌株可通过定植持续产生3HB,直接治疗肠道炎症。结果显示,工程菌还可以通过增加AKK益生菌的丰度,产生大量短链脂肪酸,间接缓解肠道炎症,从而调节肠道。与常规口服剂量的3HB相比,修饰的ECNL4治疗肠道炎症更有效。
可定制的ECN药物递送系统要达到加强对药物的保护,减少药物使用和毒性,增强靶向性,才能被设计成用作诊断疾病的传感器或达到增强药物治疗效果。基因工程或材料表面修饰开发ECN递送系统仍取决于疾病、给药方式和患者。
另外工程化ECN仍存在一定的问题:
3. 一些在动物实验中有效的工程化 ECN 菌株在临床试验中并不理想,例如 SYNB102,工业化生产也将面临未知的挑战。
原文链接:https://doi.org/10.1016/j.mtbio.2023.100543
通讯作者:孙达
(照片提供自:孙达团队)
孙达,博士&副研究员&硕导&温州大学生命科学研究院院长助理。担任Theranostics、Journal of Materials Science & Technology、Journal of Nanobiotechnology、Science of the Total Environment、Frontiers in Bioengineering and Biotechnology、Life Sciences等多个国际期刊审稿专家。先后主持科学研究项目5项,并参与7项科学研究项目,3项平台申请与建设项目。在Materials Today Bio、Theranostics、Frontiers in Nutrition、Materials Science & Engineering C、Pharmaceutics、 Frontiers in Pharmacology等国内外学术刊物上发表论文68篇(累计IF>300),其中第一/通讯作者论文40余篇(累计IF>200),获授权发明专利9项。
欢迎加入岚翰生命科学群:文献学习2
参考文献(上下滑动阅读)
[1] H. Ji, R. Peng, L. Jin, J. Ma, Q. Y ang, D. Sun, W. Wu, Recent Advances in ROS-Sensitive Nano-Formulations for Atherosclerosis Applications, Pharmaceutics. 13 (2021) 1452.
[2] L. Luo, W. Wu, D. Sun, H.-B. Dai, Y . Wang, Y . Zhong, J.-X. Wang, A. Maruf, D. Nurhidayah, X.-J. Zhang, Y . Wang, G.-X. Wang, Acid-Activated Melittin for Targeted and Safe Antitumor Therapy, Bioconjug Chem. 29 (2018) 2936–2944.
[3] R. Peng, H. Ji, L. Jin, S. Lin, Y . Huang, K. Xu, Q. Y ang, D. Sun, W. Wu, Macrophage-Based Therapies for Atherosclerosis Management, Journal of Immunology Research. 2020 (2020) 1–11.
[4] D. Sun, J. Chen, Y . Wang, H. Ji, R. Peng, L. Jin, W. Wu, Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery, Theranostics. 9 (2019) 6885–6900.
[5] L. Zhu, Y . Zhong, S. Wu, M. Y an, Y . Cao, N. Mou, G. Wang, D. Sun, W. Wu, Cell Journal Pre-proof membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics,Materials Today Bio. 14 (2022) 100228.
[6] M. Guo, C. Xia, Y . Wu, N. Zhou, Z. Chen, W. Li, Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems, Frontiers in Bioengineering and Biotechnology. 9 (2021).
[7] T. Jiang, X. Yang, G. Li, X. Zhao, T. Sun, R. Müller, H. Wang, M. Li, Y. Zhang, Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging, Anal. Chem. 93 (2021) 15687–15695.
[8] C. Sabu, C. Rejo, S. Kotta, K. Pramod, Bioinspired and biomimetic systems for advanced drug and gene delivery, J. Control. Release. 287 (2018) 142–155.
[9] C. Fu-Ming, L. Na, X. Jie-Hua, Z. Ming-Bin, Z. Ying, L. Ying-Mei, M. Ai-Qing, C. Liao, C. Lin-Tao, Review on Cell/Bacteria-Driven Drug Delivery Systems, Prog. Biochem. Biophys. 46 (2019) 1162–1170.
[10] J.L. Tuohy, J.A. Somarelli, L.B. Borst, W.C. Eward, B.D.X. Lascelles, J.E. Fogle, Immune dysregulation and osteosarcoma: Staphylococcus aureus downregulates TGFbeta and heightens the inflammatory signature in human and canine macrophages suppressed by osteosarcoma, Vet. Comp. Oncol. 18 (2020) 64–75.
[11] Y. Wang, J. Ye, P. Wang, Application of Synthetic Biology in Targeted Cancer Therapies by E.coli Nissle 1917, Chinese Journal of Biochemistry and Molecular Biology. 37 (2021) 20–28.
[12] A. Troge, W. Scheppach, B.O. Schroeder, S.A. Rund, K. Heuner, J. Wehkamp, E.F. Stange, T.A. Oelschlaeger, More than a marine propeller – the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus, International Journal of Medical Microbiology. 302 (2012) 304–314.
[13] U. Sonnenborn, J. Schulze, The non-pathogenic Escherichia coli strain Nissle 1917–features of a versatile probiotic, Microbial Ecology in Health and Disease. 21 (2009) 122–158.
[14] S. Stebe-Frick, M.J. Ostaff, E.F. Stange, N.P. Malek, J. Wehkamp, Histone deacetylase-mediated regulation of the antimicrobial peptide hBD2 differs in intestinal cell lines and cultured tissue, Sci Rep. 8 (2018) 12886.
[15] D. Różańska, B. Regulska-Ilow, I. Choroszy-Król, R. Ilow, [The role of Escherichia coli strain Nissle 1917 in the gastro-intestinal diseases], Postepy Hig Med Dosw (Online). 68 (2014) 1251–1256.
[16]S.S.W. Effendi, I.-S. Ng, Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917, Crit. Rev. Microbiol.
[20] Z. Zhao, S. Xu, W. Zhang, D. Wu, G. Yang, Probiotic Escherichia coli NISSLE 1917 for inflammatory bowel disease applications, Food Funct. 13 (2022) 5914–5924.
[17] G. Teng, Z. Liu, Y. Liu, T. Wu, Y. Dai, H. Wang, W. Wang, Probiotic Escherichia coli Nissle 1917 Expressing Elafin Protects Against Inflammation and Restores the Gut Microbiota, Front. Microbiol. 13 (2022) 819336.
[18] W. Niu, F. Yang, Z. Fu, Y. Dong, Z. Zhang, J. Ju, The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease, Microbial Pathogenesis. 165 (2022) 105381.
[19] H. Takaishi, T. Matsuki, A. Nakazawa, T. Takada, S. Kado, T. Asahara, N. Kamada, A. Sakuraba, T. Yajima, H. Higuchi, N. Inoue, H. Ogata, Y. Iwao, K. Nomoto, R. Tanaka, T. Hibi, Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease, International Journal of Medical Microbiology. 298 (2008) 463–472.
[20] P. Schierack, S. Kleta, K. Tedin, J.T. Babila, S. Oswald, T.A. Oelschlaeger, R. Hiemann, S. Paetzold, L.H. Wieler, E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells, PLoS ONE. 6 (2011) e14712.
[21] R. Maltby, M.P. Leatham-Jensen, T. Gibson, P.S. Cohen, T. Conway, Nutritional Basis for Colonization Resistance by Human Commensal Escherichia coli Strains HS and Nissle 1917 against E. coli O157:H7 in the Mouse Intestine, PLoS ONE. 8 (2013) e53957.
[22] R. Reissbrodt, W.P. Hammes, F. dal Bello, R. Prager, A. Fruth, K. Hantke, A. Rakin, M. Starcic-Erjavec, P.H. Williams, Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli, FEMS Microbiology Letters. 290(2009)62–69.
[23] S.N. Ukena, A. Singh, U. Dringenberg, R. Engelhardt, U. Seidler, W. Hansen, A. Bleich, D. Bruder, A. Franzke, G. Rogler, S. Suerbaum, J. Buer, F. Gunzer, A.M. Westendorf, Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity, PLoS ONE. 2 (2007) e1308.
[24] K.B. Ahn, A.R. Kim, K.-Y. Kum, C.-H. Yun, S.H. Han, The synthetic human betadefensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants, J Microbiol. 55 (2017) 830–836.
[25] J.W. Kim, Risk Factors for Delayed Recurrence of Clostridium difficile Infection, Intest Res. 12 (2014) 266.
[26] F. Algieri, J. Garrido-Mesa, T. Vezza, M.J. Rodríguez-Sojo, M.E. RodríguezCabezas, M. Olivares, F. García, J. Gálvez, R. Morón, A. Rodríguez-Nogales, Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs, Eur J Nutr. 60 (2021) 2537–2551.
[27] A. Behrouzi, H. Mazaheri, S. Falsafi, Z.H. Tavassol, A. Moshiri, S.D. Siadat, Intestinal effect of the probiotic Escherichia coli strain Nissle 1917 and its OMV, J. Diabetes Metab. Disord. 19 (2020) 597–604.
[28] S. Sha, B. Xu, X. Kong, N. Wei, J. Liu, K. Wu, Preventive effects of Escherichia coli strain Nissle 1917 with different courses and different doses on intestinal inflammation in murine model of colitis, Inflamm. Res. 63 (2014) 873–883.
[29] S. Guo, S. Chen, J. Ma, Y. Ma, J. Zhu, Y. Ma, Y. Liu, P. Wang, Y. Pan, Escherichia coli Nissle 1917 Protects Intestinal Barrier Function by Inhibiting NF- κ B-Mediated Activation of the MLCK-P-MLC Signaling Pathway, Mediators of Inflammation. 2019 (2019) 1–13.
[30] H. Xu, Q. Hou, J. Zhu, M. Feng, P. Wang, Y. Pan, The protective effect of Escherichia coli Nissle 1917 on the intestinal barrier is mediated by inhibition of RhoA/ROCK2/MLC signaling via TLR-4, Life Sciences. 292 (2022) 120330.
[31] R. Li, L. Helbig, J. Fu, X. Bian, J. Herrmann, M. Baumann, A.F. Stewart, R. Müller, A. Li, D. Zips, Y. Zhang, Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy, Research in Microbiology. 170 (2019) 74–79.
[32] H. Wang, S.E.P. Bastian, A. Lawrence, G.S. Howarth, Factors derived from Escherichia coli Nissle 1917, grown in different growth media, enhance cell death in a model of 5-fluorouracil-induced Caco-2 intestinal epithelial cell damage, Nutr Cancer. 67 (2015) 316–326.
[33] M. Yu, J. Kim, J.H. Ahn, Y. Moon, Nononcogenic restoration of the intestinal barrier by E. coli-delivered human EGF, JCI Insight. 4 (2019) e125166.
[34] L. Wang, Y. Liao, R. Yang, Z. Zhu, L. Zhang, Z. Wu, X. Sun, An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis, Bioeng. Transl. Med. (n.d.) e10219.
[35] S. Wang, A.K. Ghosh, N. Bongio, K.A. Stebbings, D.J. Lampe, M. Jacobs-Lorena, Fighting malaria with engineered symbiotic bacteria from vector mosquitoes, Proc Natl Acad Sci U S A. 109 (2012) 12734–12739.
[36] S.-G. Woo, S.-J. Moon, S.K. Kim, T.H. Kim, H.S. Lim, G.-H. Yeon, B.H. Sung, C.-H. Lee, S.-G. Lee, J.H. Hwang, D.-H. Lee, A designed whole-cell biosensor for live diagnosis of gut inflammation through nitrate sensing, Biosensors and Bioelectronics. 168 (2020) 112523.