其他
当人们与世界互动时,不论是观察移动的物体,或是自身移动时视野中周遭的变化,都涉及一种称为视觉运动的过程。研究视觉运动的方法有很多,其中一种是脑电图(EEG)。但传统上,利用EEG研究视觉运动过程,需要在严格的实验条件下进行,其生态效度有限。在现实世界中,大脑整合了复杂、动态、多模态的视觉运动线索,来指导运动的执行。研究人员已经发现,大脑顶枕皮层参与控制目标导向运动,例如到达、抓取、捕捉、躲避物体等。乒乓球则是一项需要快速整合视觉运动的全身反应性运动。为了解现实世界中进行乒乓球运动时顶枕皮层的神经元活动,来自美国佛罗里达大学的研究团队进行了一项有趣的研究。他们使用高密度头皮EEG定量分析运动时顶枕皮层的脑电动力学。该研究分析了受试者与机器人打乒乓球时及与人类对战时,顶枕源定位簇的功率谱密度、事件相关谱扰动、试验间相位一致性、事件相关电位和事件相关相位一致性的差异。结果发现,与人类对战相比,受试者与机器人对战时击球事件前后θ波段功率波动更大,事件相关电位的相间一致性和偏转更强,顶枕神经簇之间的事件相关一致性更高。因此,研究者发现与和人类训练相比,机器人运动训练会产生不同的大脑动力学,大脑的活动变得更加的活跃。该成果发表在著名期刊eNeuro上。▷图注:论文封面。图源:eNeuro官网乒乓球作为一项反应性运动,可用于感觉运动整合、运动预期、物体拦截神经控制机制的研究。并且,由于乒乓球比赛中对手之间的距离较短,运动员需在极短的时间内感知、计划、击球。有研究报道,相较于非运动员,职业运动员的反应速度更快,手部运动速度更快,视觉运动整合技能也更有效。此外,乒乓球运动干预治疗能够减少认知能力下降,促进执行功能,提高精神敏锐度。研究乒乓球神经控制机制有助于深入了解其神经生理益处的原理。本项研究中,37名受试者的平均年龄为23.5岁,均为右利手,视力正常,身体健康,并具有熟练的乒乓球技能和丰富的经验。在实验中,被试均佩戴包含120个头皮电极的EEG系统,脑电数据的采集频率为500