其他
【导读】大家好,我是泳鱼。一个乐于探索和分享AI知识的码农!机器学习和深度学习中的模型都是遵循数学函数的方式创建的。从数据分析到预测建模,一般情况下都会有数学原理的支撑,比如:欧几里得距离用于检测聚类中的聚类。傅里叶变换是一种众将函数从一个域转换到另一个域的数学方法,它也可以应用于深度学习。本文将讨论傅里叶变换,以及如何将其用于深度学习领域。什么是傅里叶变换?在数学中,变换技术用于将函数映射到与其原始函数空间不同的函数空间。傅里叶变换时也是一种变换技术,它可以将函数从时域空间转换到频域空间。例如以音频波为例,傅里叶变换可以根据其音符的音量和频率来表示它。我们可以说,任何函数的傅里叶变换所执行的变换都是频率的函数。其中结果函数的大小是原始函数所包含的频率的表示。让我们举一个信号的例子,它的时域函数如下所示:在同一时间范围内获取另一个信号的一部分将这两个信号的称为