其他
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【多传感器融合】技术交流群后台回复【READ】获取论文和代码!!!摘要合成自由视角真实感图像是多媒体领域的一项重要任务。随着高级驾驶辅助系统(ADAS)的发展及其在自动驾驶汽车中的应用,对不同场景进行试验成为一项挑战。虽然通过图像到图像的转换方法可以合成出具有照片般真实感的街道场景,但是由于缺乏三维信息,这种方法不能产生连贯的场景。本文提出了一种大规模神经绘制方法来合成自动驾驶场景(READ),使得在PC上通过多种采样方案合成大规模驾驶场景成为可能。为了表示驾驶场景,本文提出了一个渲染网络𝜔−𝑛𝑒𝑡,用于从稀疏点云中学习神经描述子(descriptors)。该模型不仅可以合成逼真的驾驶场景,而且可以对驾驶场景进行拼接和编辑。实验结果表明,该模型在大规模驾驶场景下具有较好的性能。图1:给定输入点云,本文的自动驾驶场景渲染(READ)从不同的视图合成照片真实感驾驶场景,能够为自动驾驶提供丰富的数据,而不是单一视图的图像介绍合成自由视角的照片真实感图像是多媒体中的一个重要任务[3]。特别是,合成的大规模街景对于一系列现实世界的应用是必不可少的,包括自动驾驶[12,14]、机器人仿真[6,30]、目标检测[9,35,36]和图像分割[7,25,32]。如图1所示,神经场景绘制的目标是从移动的摄像机合成三维场景,用户可以从不同的视角浏览街道风景,并进行自动驾驶模拟实验。此外,这可以生成多视图图像,为多媒体任务提供数据。随着自动驾驶的发展,在各种驾驶场景下进行实验具有挑战性。由于复杂的地理位置、多变的环境和道路条件,对室外环境的模拟往往比较困难。此外,很难对一些意外的交通场景进行建模,如车祸,在这些场景中,模拟器可以帮助减少现实差距。然而,像Carla[6]这样被广泛使用的模拟器所生成的数据与使用传统渲染管道的真实世界场景有很大的不同。基于图像到图像转换的方法[7,10,25,26]通过学习源图像和目标之间的映射来合成带有语义标签的街景。尽管产生了令人鼓舞的街道场景,但仍然存在一些大的人工制品和不连贯的纹理。此外,合成的图像只有单一视图,无法为自动驾驶汽车提供丰富的多视图交通条件。这阻碍了他们大量的现实世界的应用程序。近年来,基于神经辐射场(NERF)的方法[18,19,29,34]在多视点真实感场景合成方面取得了很好的效果。正如[5]中所建议的,它们不能在只有少量输入视图的情况下产生合理的结果,这通常发生在驾驶场景中,对象只出现在几个帧中。此外,基于NERF的方法主要渲染内部或对象。在复杂的驾驶环境中,大量人工物出现在封闭的视图和周围环境中,很难合成大规模的驾驶场景。为了解决这个问题,NERFW[16]利用额外的深度和分割注释来合成一个室外建筑,使用8个GPU设备需要大约两天的时间。如此长的重建时间主要是由于对广阔的空间进行了不必要的采样。与纯粹依赖于每个场景拟合的基于NERF的方法不同,神经渲染方法[27,28,31]可以通过神经纹理有效地初始化,神经纹理存储在3D网格代理(3D