查看原文
其他

斯坦福发布首份AI100报告,展望2030年

2016-09-05 战略前沿技术

来源:雷锋网(leiphone-sz)


斯坦福近期发起了名为“人工智能研究的100年”的项目, 制定了相关具体的计划(下个100年中每五年人工智能对社会影响的详细报告)。

AI研究趋势

千禧之年以前,人工智能(AI)的吸引力大部分来源于它所承诺能实现的愿景中。但是在最近15年里,它所承诺的大多数都已经实现了。人工智能科技早已遍布我们的生活。在它们正转变成为社会的核心力量的过程中,AI领域的研究已经从简单地建立智能系统转变成了建立具有人类意识的、值得信赖的智能系统。

几个因素推动了人工智能革命。其中最重要的是机器学习的成熟——一部分是通过云计算资源和广泛、基于网络的数据收集的支持才得以实现。机器学习进步的主要原因来源于“深度学习”——它是使用一种称为反向传播(backpropagation)的自适应人工训练方法。

在信息处理算法上面表现的进步也伴随着在硬件科技上基本操作的重大进展(比如感知、觉察和对象检测等)。新的平台和数据驱动产品的市场、经济激励机制、寻找新的产品和市场,共同促进了人工智能驱动技术的到来。

有的这些趋势驱动着以下研究领域越来越热门:

大规模的机器学习

现下机器学习(监督学习或者无监督学习)中多数基础问题都已经理解透彻了,目前主要努力的方向是将现有的算法扩展到特别大的数据集中。

深度学习

深度学习打算在感知领域汇总更进一步(如声音、演说以及自然语言处理)

增强学习

增强学习集中在决策方面,帮助人工智能更深入地进入现实世界中学习和执行行为。

机器人

机器人导航(至少在静态环境中),已经大部分实现了。目前研究的方向是如何训练机器和周边真实环境进行交互(以可推广和预测的方式)。

计算机视觉

计算机视觉目前是机器感知中最突出的形式,现下计算机视觉中主要研究聚焦在自动给图像和视频加上标注。

自然语言处理

自然语言处理经常和自动语义识别一同出现,也是机器感知中一个非常热门的领域。目前的研究主要转向到发展处能和人类通过对话交互的精确、兼容的系统。

协作系统

目前越来越多研究倾向于将人类和机器的优势互补——比如人类帮助人工智能系统克服它们自身的限制,对于agents来说可以增强人类的能力。

众包和人类计算

目前该领域的研究倾向于通过利用人类的智慧增强计算机系统来解决计算机无法解决的问题。

算法游戏理论和计算社会选择

人工智能能利用大量的物联网数据来进行改进,目前这些物联网设备间存在大量互不兼容的协议,人工智能能够帮助克服这个困难。

神经形态芯片

在深度神经网络的帮助下,构筑专用的神经形态硬件。

AI研究未来的总体趋势

数据驱动范例所取得的巨大成功已经取代了传统的人工智能范例。

未来的十五年中,研究小组期待能更多地聚焦在开发有人类意识的系统(这意味着专门替特定人群设计的可以实现交互的特定模型)。另外要开发出更多新的、创新的方式以交互、可量化的办法去教导机器人。此外物联网系统(设备、云端)也将越来越流行,它们也可被认为是社会和经济层面的人工智能。在接下来几年中,具有新的感知/对象识别能力的人工智能和(能保证人类安全的)机器平台将会成长的越来越快,那些数据驱动的产品也会进一步成长。

研究小组也期待一些传统形式的人工智能参与进来,因为一些研究者慢慢意识到纯粹地端对端深度学习方式先天存在不可避免的限制性。希望年轻的研究人员不要做重复工作,多多关注过去五十年里人工智能领域中出现的显著进步,也同时关注控制理论、认知科学与心理学相关的研究。

AI在不同领域中的应用

在未来世界中,或者具体一点2030年,我们的生活会变成什么样子?

交通

交通很有可能是人工智能中普罗大众想要最先关注的一个领域,因为相关的AI系统的安全性和可靠性实在太重要了。可以预见自主交通很快就会变得司空见惯,其作为大多数人第一次亲身体验的人工智能系统,将会大大地影响公众对于AI的感官认知。

一些关键技术早已促进了AI在交通中的广泛应用。与2000年相比,通过和各种低成本却高精度的传感器,今时今日个人数据的规模、多样性以及可用交通数据总量是相当令人震惊的。正是因为这些数据,像实时交通、道路信息预测、路线规划、拼车以及才成为可能。

未来,人工智能在交通方面将会出现更智能的汽车(自动停车、高速巡航、路线规划等功能),以及无人驾驶汽车(不久的未来,感知算法将会在驾驶能力方面超过人类的表现。)还有交通规划(实现车与车之间的自动沟通互联),以及需求导向交通服务和与人交互的智能设备等。

家庭机器人/服务型机器人

未来十五年间,机械技术与AI技术的共同发展将会有助于人们安全而可靠地使用家庭机器人。这类具有特殊功能的机器人将具备邮寄包裹,打扫办公室,提高安全保障等服务功能,但是,在可预见的未来,技术方面的限制、产出可靠地机械设备所需要的高额花费将会阻碍这些具有特殊功能机器人的商业化生产。早在2001年,就已经研发出真空清洁机器人。但是,这种机器人只能够清理平坦地面的垃圾,在真实的家庭环境中楼梯,角落这些地方往往成为这类机器人的盲区。此外,目前对于机器人在真实家庭生活环境中的可移动性研究仍然存在不足。

未来,深度学习、云计算将会使家庭机器人具备语音理解,图像标记等功能,提高机器人与人们家庭生活的交流互动。此外,在研发家庭机器人的过程中,要考虑新出现的道德与隐私等问题。

医疗

一直以来,AI技术被认为在医疗领域具有广阔的应用前景。未来,基于AI技术的应用能够提高数以百万计人的健康和生活质量。但是,AI技术在医疗领域的应用要取决于医生,护士,病人对该技术的信任,获得政策,法律法规,商业市场的支持。同AI技术在其他领域的应用相同,数据资源起到举足轻重的作用。现今,主要从以下途径获取医疗数据:个人监控设备和移动应用程序,临床环境下的电子医疗记录,及用于医疗程序与手术的辅助机器人。在大量数据的支持下,该技术的主要应用包括医疗分析,支持临床决策,监控与辅导病人,能够帮助手术或看护病人的自动化设备,医疗系统管理,研发医疗机器人,移动健康应用程序,老年保健等。

教育

过去十五年,AI技术在教育行业的应用取得了巨大进展。尽管素质教育要求师生之间的交流互动,AI能够在各个方面提高教育水平,尤其是有助于实现大规模个性化学习方式。与AI 在医疗领域的应用相似,如何更好地将人与人之间的交流互动,面对面学习与AI技术融合在一起仍将是一个重大挑战。

长久以来,机器人一直是广受欢迎的教学设备,具有代表性的是能够提高学生学业成绩的教学机器人,智能教学系统和在线学习(以大规模开放式网络课程、维基百科及可汗学院为例)。此外, AI技术(包括深度学习,自然语言处理,及其他AI技术)还可用于学习分析,主要分析学生的学习投入量,行为及成果。目前,AI技术在学校的应用尚未大规模开展起来,在一定程度上主要是因为缺乏资金来源和提高该技术有效性的大量数据。

对于AI发展的忧虑及应对方案构想

前面我们提到对AI技术未来发展趋势及应用前景的瞻望,产业界相关人士在研发与改进该技术的过程中不免对其可能引起的潜在道德问题感到担忧。昨天,来自Alphabet、Amazon、Facebook、IBM及Microsoft的研究员相聚在一起,讨论AI对人类的工作、交通甚至于战争将会带来的影响。这些产业界研究员的主要目的是保证AI研究能够造福人类,而不是对人类生活及生存构成威胁,来自微软的研究员Eric Horvitz在报告中特别强调了业界努力的重要性。

技术行业的主要忧虑在于,是否应当对AI研究工作制定法律方面的限制。因此,他们正在尝试创建一种自我监管组织框架,尽管不太确定这种自我监管机制将如何运行操作。

在讨论过程中,斯坦福报告的作者们一致认为,由于AI技术能够在多领域实行多方面应用,监管控制AI研究及其发展是不切实际的,其中将要遇到的风险与将要考虑处理的问题也是多种多样的。

Dr. Stone在报告中提议:“要提高政府各个部门对人工智能的意识与专业程度”,这将增加对AI研究与发展的公共与私人投入。

David Kenny,IBM沃斯顿人工智能研究部门总经理,认为,政府应当承担起对人工智能的监管职责,但是,通常政策执行总是落后于技术发展。

这五家公司共同拟定了一条备忘录,计划在九月中旬宣布新的自我监管组织框架。其中一个尚未解决的问题是,根据参加协商的某一人士透露,Google DeepMind,Alphabet旗下一家子公司,要求各家公司独立参与制定自我监管组织框架。

AI产业界正在共同构建一份类似于人权宣言的Global Network Initiative(全球网络倡议书),要求公司与非政府组织注重言论自由与隐私权利自由。

Reid Hoffman,LinkedIn成立者,从事人工智能研究出身,单独与麻省理工学院媒体实验室讨论为探索人工智能的社会经济影响的这一项目提供资金支持。MIT与产业界共同努力将技术进步与社会经济策略问题紧密联系在一起。MIT团队已经开始讨论设计“社会参加型”新型AI与机器人系统。

“社会参加型”这一短语来自人们长久以来争论的设计出能够与人类交流沟通的计算机系统与机器人系统。例如,Pentagon近来开始提倡一项军事策略,倡导利用AI技术,使得人类继续控制生杀大权,而不是将这一职责授权给机器。

MIT媒体实验室主任与纽约时报董事会成员Joichi Ito说道:“我想要指出的关键一点是,计算机科学家尚不能够与社会科学家与哲学家实现完美沟通,我们想要加大对那些能够为制定政策做出贡献的社会科学家的支持力度”。

斯坦福报告尝试对能够模仿人类能力的计算机与机器人系统将会对一个典型北美城市市民带来的影响进行界定,报告作者探索了人工智能将会对现代生活中的八个方面(医疗、教育、娱乐及工作等)带来的影响,但是,并未讨论人工智能在军事战争中的应用。他们说,AI在军事领域的应用超出其当前的研究范围,但是也不排除未来对AI在武器方面应用的关注度。

另外,该报告未考虑到一些计算机科学家关于机器“奇点”的观点——即机器将变得越来越智能,甚至会威胁人类。鉴于未来人工智将给予我们带来的种种便利,这些可能存在的风险是不是我们能够接受的呢?


关于“人工智能”和的文章,请点击以下链接查阅:

【前沿观察】人工智能读一百万遍《射雕英雄传》能写出靖哥哥的故事吗?

【前沿观察】谷歌的雄心:用人工智能重塑每种设备

【前沿观察】谷歌的雄心:用人工智能重塑每种设备

【特别推荐】滴滴程维:互联网上半场已结束,下半场是人工智能

【专题报告】人工智能: 产业链初具雏形,颠覆革命行路致远(附国内人工智能行业全梳理)

【科技评论】李德毅:脑认知的形式化 ——从研发机器驾驶脑谈开去

【特别推荐】谷歌CEO的公开信:人类即将进入人工智能时代

【专家视点】李德毅院士:人工智能在奔跑

【前沿观察】人工智能竞赛:BAT保守布局 技术尚输国际巨头

【专家视点】李德毅院士:对人工智能要有点敬畏之心

【专题报告】关于发展我国人工智能技术与产业的建议

【通知公告】关于印发《“互联网+”人工智能三年行动实施方案》的通知

【前沿观察】人工智能如此强大,人类的优越性在哪里?

【专题报告】第一份人工智能深度分析报告

【前沿观察】比尔盖茨:人工智能梦想即将实现 | 马斯克:人工智能将成宠物

【科技观察】在太空之外 马斯克还有一个更具野心的人工智能梦

【防务资讯】DARPA局长再谈人工智能:人类对于新技术必须持谨慎态度

【前沿观察】人工智能产业化面临多重挑战

【前沿评论】李彦宏:人工智能将成为互联网下一幕的核心动力 | 实录+PPT

【科技评论】类人概念学习:机器学习下一个飞跃?

【科技观察】“互联网+人工智能”正催生一场新的工业革命

【科技评论】刘成林:从模式识别到类脑研究

【深度报告】人工智能60年,下一个60年如何新生

【专家视点】李淼:科技的近未来和人工智能的极限

【前沿展望】十项机器人领域最前沿技术

【前沿评论】人工智能六十年

【科技观察】我们对人工智能的10大误解

【科技观察】从脑网络到人工智能 ——类脑计算的机遇与挑战

【科技评论】我们需要什么样的机器人

【防务评论】机器人武器须保持人为控制

【前沿展望】人的智能与人工智能的现在和未来

【防务观察】智能战场——DARPA通过人工智能支撑新“抵消战略”

【科技评论】是“人工智能”还是“人工低能”?

【专家视点】王曦:人工智能再强大,能强过乔布斯吗?|关于乔布斯最深刻的文章

【专家视点】顾险峰:奇点降临 - 人工智能对决人类

【科技评论】人机大战给军队改革带来的启示

【科技评论】谭铁牛:人工智能,天使还是魔鬼

【科技专论】互联网终结,人机智能崛起

【科技评论】人工智能赢了棋,人类赢了未来

【前沿评论】科大讯飞刘庆峰:人工智能全球决战未来十年

【科技评论】人工智能关键技术决定机器人未来

【科技评论】人工智能的崛起 开启万物感知新时代

【防务资讯】DARPA局长谈人工智能

【科技观察】人工智能全球投资脉络

【科技评论】人工智能:下一个互联网革命

【科技评论】人工智能:人类走向加速灭亡之路

【前沿动态】人工智能的崛起:智商测试得分超过四岁儿童

【专家观点】谭铁牛:智能化时代生物识别的机遇与挑战(附报告全文)

【科技评论】人民日报:迎接机器人时代的到来

【科技评论】吴甘沙:大数据的六大人工智能变现方式

【科技评论】科大讯飞徐景明:人工智能的波浪式创新

【特邀专栏】刘言锋语:人工智能6个智能分级

【科技评论】人工智能≠类人智能:超越图灵测试的世界观

【刘言锋语】开展AI智商测试应首先建立统一人和机器的标准智能模型

【前沿动态】新人工智能系统 | 涌现计算 | 脑机接口 | 无人驾驶船 | 无人潜航器

【专家观点】王喜文:工业4.0与智能机器人

【科技观察】人工智能发展到了哪一步?

👀六大技术定义2016年 人工智能和机器人领衔

【科技评论】智能服务机器人前瞻,红海派对决蓝海派(2万字实录)

【科技评论】图灵测试先天不足?解决人工智能威胁论争论的四个困难--AI 智商测试2015

【特邀专栏】"刘"言"锋"语:,互联网大脑计划系列四——互联网+脑科学,21世纪带给中国重大理论创新机遇

一网打尽系列文章,请回复以下关键词查看:

习近平 | 创新中国 | 创新创业 | 协同创新 | 产学研 | 预见2016 | 新科技革命 | 基础研究 | 中国武器 | 电磁炮 | 生物 | 仿生 | 脑科学 | 虚拟现实 | 增强现实 | 装备采办 | 抵消战略 | 水下战 | 轰炸机 | 预警机 | 战斗机 | 运输机 | 六代机 | 能源 | 电池 | 云计算 | 大学排名 | 博士 | 导师 | 凯文凯利 | 钱学森 | 黄志澄 | 许得君 | 施一公 | 王喜文 | 贺飞 | 李萍 | 刘锋 | 王煜全 | 马斯克 | 纳米 | 基金 | 人工智能 | 机器人 | 无人机 | 俄罗斯 | 日本 | 英国 | 印度 | 以色列 | 物联网 | 互联网+ | 大数据 | 谷歌 | 工业4.0 | 颠覆性技术 | 3D打印 | 4D打印 | 太赫兹 | 硅谷 | 石墨烯 | 北斗 | 通信 | 智能制造 | 军民融合 | 民参军 | 激光 | 智库 | 商业航天 | 量子 | 基因 | 基因编辑 | 未来战争 | 网络空间战 | 网络武器 | 成果转化 | 超材料 | 超级计算机 | 卫星 | 战略能力办公室 | DARPA | Gartner | MIT技术评论 | 2016文章全收录 | 2015文章全收录 | 2014文章全收录 |  其他主题系列陆续整理中,敬请期待…… 

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存