比翱工程实验室丨使用传递矩阵法表征和开发周期性声学超材料
本文提出了一种结合有限元计算的传递矩阵方法来表征具有面内周期性的均质和非均质吸声材料。表征的声学材料主要是由多层制成的超材料,其中至少一层由非均质材料(NHM:Non-Homogeneous Material)组成。NHM是一种多孔或固体基质,内含周期性简单或复杂夹杂物和亥姆霍兹谐振器。该方法与三传声器双负载法相似,可以确定NHM的等效传输矩阵。通过使用NHM的等效传输矩阵与其他传输矩阵串联解析耦合,可以在仅使用有限元计算将更昂贵和耗时的配置中轻松快速地建模复杂的多层系统。用本方法预测的垂直入射声传输损失的结果与不同超材料结构的有限元结果进行了比较,得到了较好的一致性。本项研究为在垂直入射下表征和设计具有周期性夹杂的复杂多层声学超材料提供了一种很有效的方法。它可以用来优化含有非均质材料的多层构型与系统。
[1] Atalla N, Sgard F. Finite element andboundary methods in structural acoustics and vibration. CRC Press; 2015.
[2] Fokin V, Ambati M, Sun C, Zhang X.Method for retrieving effective properties of locally resonant acousticmetamaterials. Phys Rev B 2007;76(14). 144302.
[3] Nicolson AM, Ross GF. Measurement ofthe intrinsic properties of materials by time-domain techniques. IEEE TransInstrum Meas 1970;19(4):377–82.
[4] William WEIR, B.. Automatic measurementof complex dielectric constant and permeability at microwave frequencies. Proc.IEEE62 1974:33–6.
[5] Salissou Y, Panneton R, Doutres O. Complementto standard method for measuring normal incidence sound transmission loss withthree microphones.JASA Express Lett 2012;131(3):EL216–22.
[6] ASTM E2611-19. Standard test method fornormal incidence determination of porous material acoustical properties basedon the transfer matrix method. New York: American Society for Testing andMaterials; 2019.
[7] Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z,Chan CT, et al. Locally resonant sonic materials. Science 2000;289:1734–6.
[8] Mei J, Ma G, Yang M, Yang J, Sheng P.Dynamic mass density and acoustic metamaterials, Acoustic Metamaterials and PhononicCrystals, Springer Series in Solid-State Sciences, vol. 173. Berlin,Heidelberg: Springer; 2013.
[9] Liu Z,ChanCT, Sheng P.Analyticmodelofphononic crystalswithlocal resonances. Phys Rev B 2005;71(1).https://doi.org/10.1103/PhysRevB.71.014103.
[10] Lewin´ ska MA, Kouznetsova VG, van DommelenJAW, Krushynska AO, Geers MGD. The attenuation performance of locally resonantacoustic metamaterials based on generalised viscoelastic modelling. Int JSolids Struct 2017;126-127:163–74.
[11] Groby J-P, Lagarrigue C, Brouard B,Dazel O, Tournat V, Nennig B. Using simple shape three-dimensional rigidinclusions to enhance porous layer absorption. J Acoust Soc Am2014;136(3):1139–48.
[12] Schwan L, Umnova O, Boutin C, GrobyJ-P. Nonlocal boundary conditions for corrugated acoustic metasurface withstrong near-field interactions. J Appl Phys 2018;123(9):091712. https://doi.org/10.1063/1.5011385.
[13] Pham K, Maurel A, Marigo J-J. Twoscale homogenization of a row of locally resonant inclusions - the case ofanti-plane shear waves. J Mech Phys Solids 2017;106:80–94.
[14] Doutres O, Atalla N, Osman H. Transfermatrix modeling and experimental validation of cellular porous material with resonantinclusions. J Acoust Soc Am 2015;137(6):3502–13.
[15] Lagarrigue C, Groby JP, Tournat V,Dazel O, Umnova O. Absorption of sound by porous layers with embedded periodicarrays of resonant inclusions. J Acoust Soc Am 2013;134(6):4670–80.
[16] Groby J-P, Lagarrigue C, Brouard B,Dazel O, Tournat V, Nennig B. Enhancing the absorption properties of acousticporous plates by periodically embedding Helmholtz resonators. J Acoust Soc Am2015;137(1):273–80.
[17] Sainidou R, Stefanou N, Psarobas IE,Modinos A. A layer-multiple-scattering method for phononic crystals andheterostructures of such. Comput Phys Commun 2005;166(3):197–240.
[18] Schwan L, Groby JP. Introduction toMultiple Scattering Theory, Chap6, pp 143- 182, in Fundamentals andApplications of Acoustic Metamaterials: From Seismic to Radio Frequency, Volume1, John Wiley & Sons, Inc, 2019.
[19] Allard J-F, Dazel O, Gautier G, GrobyJ-P, Lauriks W. Prediction of sound reflection by corrugated porous surfaces. JAcoust Soc Am 2011;129(4):1696–706.
[20] Gaborit M, Schwan L, Dazel O, GrobyJ-P, Weisser T, Göransson P. Coupling FEM, Bloch Waves and TMM in MetaPoroelastic Laminates. Acta Acust united Ac 2018;104(2):220–7.
[21] Li Z, Aydin K, Ozbay E. Determinationof the effective constitutive parameters of bianisotropic metamaterials fromreflection and transmission coefficients.Phys Rev E 2009;79(2). 026610.
[22] Castanié A, Mercier J-F, Félix S,Maurel A. Generalized method for retrieving effective parameters of anisotropicmetamaterials. Opt Express 2014;22(24).29937-53.
[23] Park JH, Lee HJ, Kim YY.Characterization of anisotropic acoustic metamaterial slabs. J Appl Phys2016;119(3):034901.
[24] Terroir A, Schwan L, Cavalieri T,Romero-García V, Gabard G, Groby J-P. General method to retrieve all effectiveacoustic properties of fully-anisotropic fluid materials in three-dimensional space.J Appl Phys 2019;125(2):025114.
[25] Yamamoto T. Acoustic metamaterialplate embedded with Helmholtz resonators for extraordinary sound transmissionloss. J Appl Phys 2018;123 (21):215110.
[26] Yamamoto T, Furusawa H, Sakaguchi H,Nomura T. Acoustic metamaterial sound-insulator by Helmholtz resonators embeddedin lightweight plastic foam. Proc 25th ICSV; 8–12 July 2018; Hiroshima, Japan2018.
[27] Sharma GS, Skvortsov A, MacGillivrayI, Kessissoglou N. Acoustic performance of periodic steel cylinders embedded ina viscoelastic medium. J Sound Vib 2019;443:652–65.
[28] Parrinello A, Ghiringhelli GL.Transfer matrix representation for periodic
planar media. J Sound Vib 2016;371:196–209.
[29] Parrinello A, Ghiringhelli GL, AtallaN. Generalized transfer matrix method for periodic planar media. J Sound Vib2020;464:114993.
[30] Allard J-F, Atalla N. Propagation ofsound in porous media: modeling sound absorbing materials. 2nd ed. New York:Elsevier Applied Sciences; 2009.
[31] Laly Z, Panneton R, Atalla N. Atransfer matrix approach for modeling periodic acoustic metamaterial. Canada:Montréal; 2019.
[32] Sgard F, Atalla N, Panneton R. FiniteElement Modelling of the Acoustic Properties of Rubber Containing Inclusions.Mecanum Inc Sherbrooke, QC Canada (2014), Tech. Rep. RDDC-2014-C235.
通过阅读原文了解此项研究工作的成果。