查看原文
其他

北师大版八下数学 2.3《不等式的解集​》知识点精讲

全册精讲+→ 班班通教学系统 2022-04-10

北师大版八下数学 1.4 《  角平分线》 知识点精讲 扫码查看下载

全部资源



 1.1 《等腰三角形》 知识精讲

1.2 《 直角三角形》 知识精讲

 1.3 《线段的垂直平分线》

1.4 《角平分线》 知识点精讲
 2.1《不等关系》 知识点精讲

知识点、概念总结

 1.能使不等式成立的来知数的值,叫做不等式的解。
2.一个含有来知数的不等式的所有解,组成这个不等式的解集。
3.求不等式解集的过程叫做解不等式。
4、不等关系是客观世界中量与量之间的一种主要关系,而不等式则是反映这种关系的基本形式,一直是考查的重点内容,尤其以实际问题、函数为背景的综合题较多。不等式的定义城性质是不等式的基础,许多不等式的定理、公式都是在此基础上推理、拓展而成的,因此学校时要抓住基本概念和性质,熟练掌握性质的变形及其应用,不断提升思维的深度和广度,才能在解决与不等式有关的综合题上有备无患、得心应手。

不等式的性质:
1.不等式的两边都加上(或减去)同一个数(或式子).不
等号的方向不变。
2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

概念

不等式的解:使不等式成立未知数的值叫做不等式的解

不等式的解集:一般的,一个含有未知数的不等式所有的解,组成这个不等式的解的集合,简称这个不等式的解集。

习题讲析

把不等式组的解集在数轴上表示,如图所示,那么这个不等式组的解集是      

习题答案


把两个都有一个锐角为30°的一样大小的直角三角形拼成如图所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个.



A.1个
B.2个
C.3个
D.4个

等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ、△BPR、△PAD.

解析
已知两个直角三角形全等,且有一个角是30°,
则可知∠A=∠D=30°,∠B=∠E=60°,
则∠EQP=∠EPQ=∠BPR=∠BRP=60°,
故图中是等腰三角形的有:△EPQ、△BPR、△PAD.
故选C.

图文导学

教学设计

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系

3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离A地50km,要在12︰00之前驶过A地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.

最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

1.从时间方面虑:

<

2.从行程方面:>50

3.从速度方面考虑:x>50÷

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?

由学生自学,老师可作适当补充.比如:<>50, x>50÷都是不等式.

2.不等式的解

设问1:什么是不等式的解?

设问2:不等式的解是唯一的吗?

由学生自学再讨论.

老师点拨:由x>50÷得x>75

说明x任意取一个大于75的数都是不等式<>50的解.

3.不等式的解集

设问1:什么是不等式的解集?

设问2:不等式的解集与不等式的解有什么区别与联系?

由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?

由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式<的解集,也是不等式>50的解集.那么在数轴上如何表示x>75呢?

问题2:如果在数轴上表示 x≤ 75,又如何表示呢?

由老师讲解,注意规范性,准确性.

老师适当补充:“≥” 与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75 就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思提高

教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

①x +7>②x≥ y

+ 2 = 0④ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

① a与5的和小于7

② a的与b的3倍 的和是非负数

③ 正方形的边长为xcm,它的周长不超过160cm,求x满足的条件

设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

3.填空

下列说法正确的有_____________

①x=5是不等式 x -2>0的解

②不等式 x - 2>0 的解为 x =5

③不等式 x - 2 > 0的解集为 x =5

④不等式 x - 2 > 0的解集为 x> 2

设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.

4.选择

下列不等式的解集在数轴上表示正确的是:()

A. x>-3

B. x≥2

C. x≤5

D. 0≤x≤10

设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.


名师精讲视频


 扫码查看






图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文下载全册PPT课件动画教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存