Tingzheng Hou, Xiang Chen, Lu Jiang, Cheng Tang. Advances and Atomistic Insights of Electrolytes for Lithium-Ion Batteries and Beyond[J]. Journal of Electrochemistry, 2022, 28(11): 2219007.
DOI:10.13208/j.electrochem.2219007
Electrolytes and the associated electrode-electrolyte interfaces are crucial for the development and application of high-capacity energy storage systems. Specifically, a variety of electrolyte properties, ranging from mechanical (compressibility, viscosity), thermal (heat conductivity and capacity), to chemical (solubility, activity, reactivity), transport, and electrochemical (interfacial and interphasial), are correlated to the performance of the resultant full energy storage device. In order to facilitate the operation of novel electrode materials, extensive experimental efforts have been devoted to improving these electrolyte properties by tuning the physical design and/or chemical composition. Meanwhile, the recent development of theoretical modeling methods is providing atomistic understandings of the electrolyte’s role in regulating the ion transport and enabling a functional interface. In this regard, we stand at a new frontier to take advantage of the revealed mechanistic insights into rationally design novel electrolyte systems. In this review, we first summarize the composition, solvation structure, and transport properties of conventional electrolytes as well as the formation mechanism of the electrode-electrolyte interphase. Moreover, some of the promising energy storage systems are briefly introduced. Further, approaches to stabilize the electrode-electrolyte interphase using novel electrolyte design, including electrolyte additives, high-concentration electrolytes, and solid-state electrolytes, are discussed. Some recent advances in the atomistic modeling of these aspects are particularly focused to provide a fundamental understanding of electrolytes and a comprehensive guide for future electrolyte design. Finally, we highlight the prospects of theoretical screening of novel electrolytes.
Dan-Dan Li, Xiang-Yu Ji, Ming Chen, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng. Oligomeric Ionic Liquids: Bulk, Interface and Electrochemical Application in Energy Storage[J]. Journal of Electrochemistry, 2022, 28(11): 2219002.DOI:10.13208/j.electrochem.2219002
Over recent years, oligomer ionic liquids (OILs), a novel class of ionic liquids, are becoming preferential electrolytes for high-performance energy-storage devices, such as supercapacitors with enhanced energy density and non-flammable lithium-ion batteries (LIBs). Herein, structures, properties, and their associations of the up-to-the-minute formulated OILs are systematically summarized and elaborately interpreted, especially for dicationic ionic liquids and tricationic ionic liquids. The physicochemical and electrochemical properties of OIL-based electrolytes are presented and analyzed, which are vitally important for supercapacitors and LIBs. Subsequently, the applications of OILs as electrolytes for supercapacitors and LIBs are summarized, with the comparisons of the energy-storage mechanisms and performance between OILs and MILs electrolytes in supercapacitors. Meanwhile, the optimization of the dynamic performance of OILs electrolytes is provided. Finally, the main difficulties and probable perspectives of OIL-based electrolytes are presented for future work. This review would contribute to a deep understanding of OILs and design optimized OIL-based electrolytes for energy storage systems.
Hao-Ran Cheng, Zheng Ma, Ying-Jun Guo, Chun-Sheng Sun, Qian Li, Jun Ming. Which Factor Dominates Battery Performance: Metal Ion Solvation Structure-Derived Interfacial Behavior or Solid Electrolyte Interphase Layer?[J]. Journal of Electrochemistry, 2022, 28(11): 2219012.DOI:10.13208/j.electrochem.2219012
Solid-electrolyte interphase (SEI) layer formed on the electrode by electrolyte decomposition has been considered to be one of the most important factors affecting the battery performance. We discover that the metal ion solvation structure can also influence the performance, particularly, it can elucidate many phenomena that the SEI cannot. In this review, we summarize the importance of the metal ion solvation structure and the derived metal ion de-solvation behaviors, by which we can build an interfacial model to show the relationship between the interfacial behavior and electrode performance, and then apply to different electrode and battery systems. We emphasize the influences of ionic and molecular interactions on electrode surface that differ from previous SEI-based interpretations. This review provides a new view angle to understand the battery performance and guide the electrolyte design.
Xiao-Ru Yun, Yu-Fang Chen, Pei-Tao Xiao, Chun-Man Zheng. Review on Oxygen-Free Vanadium-Based Cathodes for Aqueous Zinc-Ion Batteries[J]. Journal of Electrochemistry, 2022, 28(11): 2219004.
DOI:10.13208/j.electrochem.2219004
Aqueous zinc-ion batteries (AZIBs) are considered as one of the most promising next-generation electrochemical energy storage systems owing to their high-power density, environmental benign, intrinsic safety, and the low cost of the abundant zinc resources. However, their further development is still plagued by the inferior electrochemical performance of cathode materials. Though extensive research has been conducted to investigate various cathode materials (including manganese oxides, vanadium oxides, Prussian blues analogy, and organic materials), design of high-performance cathodes with satisfying capacity and long-term cycling stability still faces great challenges. Oxygen-free vanadium-based compounds, owing to their better conductivity, larger interlayer spacing, lower ion diffusion barrier and higher theoretical specific capacity than those of vanadium oxides, have gained increasing attention recently. In this review, we summarize the recent development about the emerging oxygen-free vanadium-based compounds in AZIBs, emphasizing the methods to design electrode materials with desired structures, effective strategies to improve their electrochemical performance, and the fundamental electrochemical mechanisms. Finally, the current challenges and outlooks of oxygen-free vanadium-based compounds are proposed, providing a novel perspective and useful guidance for the design of high-performance vanadium-based cathode materials for AZIBs.
Jin-Li Liu, Han-Feng Wu, Zhi-Bei Liu, Ying-Qiang Wu, Li Wang, Feng-Li Bei, Xiang-Ming He. Insight into the Effects of Cation Disorder and Surface Chemical Residues on the Initial Coulombic Efficiency of Layered Oxide Cathode[J]. Journal of Electrochemistry, 2022, 28(11): 2219001.
DOI:10.13208/j.electrochem.2219001
Lithium layered oxide LiNi0.6Co0.2Mn0.2O2 (NCM622) is one of the most promising cathode materials in high-energy lithium-ion batteries for electric vehicles. However, one drawback for NCM622 is that its initial coulombic efficiency (ICE) is only about 87%, which is at least 6% lower than that of LiCoO2 or LiFePO4. In this work, we investigated the effects of surface chemical residues (e.g., LiOH and Li2CO3) and Li/Ni cation disorder resulted during the sintering on the ICE. We found that the ICE of the as-prepared samples could be boosted from 80.80% to 86.68% as the sintering temperatures were increased from 825 to 900 oC. The corresponding Li/Ni cation disorder and surface chemical residues were also reduced with the increasing sintering temperatures. Furthermore, the ICE of the sample sintered at 825 oC could be enhanced by 3.57% after washing with HNO3 solution to remove the surface residues despite the Li/Ni cation disorder being increased. These results demonstrate that minimizing the amount of surface residuals and the degree of Li/Ni cation disorder through an appropriate sintering process and post-treatment technology is critical to achieve a high ICE and improve the electrochemical performances of NCM622.
The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and improved rate capability. At 0.5 C after 325 cycles, a specific capacity of 815 mAh·g-1 and a low capacity fading rate of 0.051% were obtained. The superior properties, sustainable raw materials, and facile preparation process make nano-HA@CCPC a promising additive material for practical Li-S batteries
Zhen-Wei Zhu, Jing-Yi Qiu, Li Wang, Gao-Ping Cao, Xiang-Ming He, Jing Wang, Hao Zhang. Application of Artificial Intelligence to Lithium-Ion Battery Research and Development[J]. Journal of Electrochemistry, 2022, 28(12): 2219003.
DOI:10.13208/j.electrochem.2219003
Lithium-ion batteries (LIBs) have become one of the best solutions to the energy storage issue in modern society. However, the battery materials and device development are both complex, and involve multivariable problems. Traditional trial-and-error approach, which relies on researchers to conduct experiments, has encountered bottlenecks in the improvement of the battery performance. Artificial intelligence (AI) is the most potential technology to deal with this issue due to its powerful high-speed and capabilities of processing massive data. In particular, the capability of machine learning (ML) algorithms in assessing multidimensional data variables and discovering patterns in the sets are expected to assist researchers in discovering patterns and elucidating the mechanisms of material synthesis and device fabrication. This review summarizes various challenges encountered in traditional research methods of LIBs and introduces the applications of AI in battery material research, battery device design and manufacturing, material and device characterizations, and battery cycle life and safety assessment in detail. Most importantly, we present the challenges faced by AI and ML in battery research, and discuss the shortcomings and prospects of their applications. We believe that a closer collaboration among experimentalists, modeling specialists, and AI experts in the future will greatly facilitate AI and ML methods for solving battery and materials problems that are difficult to be solved by traditional methods.
Xi-Yao Li, Chang-Xin Zhao, Bo-Quan Li, Jia-Qi Huang, Qiang Zhang. Advances on Composite Cathodes for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2022, 28(12): 2219013.DOI:10.13208/j.electrochem.2219013
Lithium-sulfur (Li-S) batteries are deemed as high-promising next-generation energy storage technique due to their ultrahigh theoretical energy density, where the sulfur cathodes with high specific capacity guarantee the energy density advantage and directly determine the battery performances. After decades of exploration, the most promising sulfur cathodes are sulfur/carbon composite (S/C) cathodes and sulfurized polyacrylonitrile (SPAN) cathodes. In this manuscript, recent advances on S/C and SPAN cathodes in Li-S batteries are comprehensively reviewed. The electrochemical reaction circumstances on S/C and SPAN cathodes are firstly introduced and compared to reveal the working mechanisms of the two types of Li-S batteries. The S/C cathodes mainly undergo solid-liquid-solid multi-phase conversion processes with typical double-plateau charge-discharge polarization curves. In comparison, the SPAN cathodes follow solid-solid conversion and exhibit single-plateau charge-discharge characteristics. Following that, key challenges and targeted optimizing strategies of the S/C and SPAN cathodes are respectively presented and discussed. For Li-S batteries with S/C cathodes, the main optimizing strategies are electrode structure modification, efficient electrocatalyst design, and redox comediation. For SPAN cathodes, the main optimizing strategies are electrode structure modification, morphology regulation by co-polymerization, heteroatom doping at molecular level, and extrinsic redox mediation. At last, current research status of Li-S batteries with S/C or SPAN cathodes are systematically analyzed through the comparison of several battery parameters, and perspectives on challenges and opportunities of S/C and SPAN cathodes in Li-S batteries are presented to guide future researches.
Rui-Qi Guo, Feng Wu, Xin-Ran Wang, Ying Bai, Chuan Wu. Multi-Electron Reaction-Boosted High Energy Density Batteries: Material and System Innovation[J]. Journal of Electrochemistry, 2022, 28(12): 2219011.DOI:10.13208/j.electrochem.2219011
The continuous development of the global energy structure transformation has put forward higher demands upon the development of batteries. The improvements of the energy density have become one of the important indicators and hot topic for novel secondary batteries. The energy density of existing lithium-ion battery has encountered a bottleneck due to the limitations of material and systems. Herein, this paper introduces the concept and development of multi-electron reaction materials over the past twenty years. Guided by the multi-electron reaction, light weight electrode and multi-ion effect, current development strategies and future trends of high-energy-density batteries are highlighted from the perspective of materials and structure system innovation. Typical cathode and anode materials with the multi-electron reactions are summarized from cation-redox to anion-redox, from intercalation-type to alloying-type, and from liquid systems to solid-state lithium batteries. The properties of the typical materials and their engineering prospects are comprehensively discussed, and additionally, the application potential and the main challenges currently encountered by solid-state batteries are also introduced. Finally, this paper gives a comprehensive outlook on the development of high-energy-density batteries.
Zhen-Zhen Ye, Shu-Ting Zhang, Xin-Qi Chen, Jin Wang, Ying Jin, Chao-Jie Cui, Lei Zhang, Lu-Ming Qian, Gang Zhang, Wei-Zhong Qian. Carbon-Al Interface Effect on the Performance of Ionic Liquid-Based Supercapacitor at 3 V and 65 oC[J]. Journal of Electrochemistry, 2022, 28(12): 2219005.
DOI:10.13208/j.electrochem.2219005
Ionic liquid (IL) electrolyte-based supercapacitors (SCs) have advantages of high operating voltage window, high energy density and nonflammability, as compared to conventional acetonitrile-based organic electrolyte SCs, and are typically suitable for the large-scale energy storage in the era of carbon neutrality full of renewable, but unstable electricity. However, current efforts were concentrated on the study with coin-cell type of IL-SCs, and less has been reported on the pouch type of IL-SCs for a long cycling time yet. To fabricate a reliable SC for the life time test or for the accelerated aging test under high temperature, one should concern the excellent contact in the current collector/electrode interface to minimize the charge transfer resistance. In the present work, the carbon-Al interfacial effect was studied in the new SC system with Al foam as a current collector coated or painted by different carbon layers. Uniform amorphous carbon layer on Al foam was obtained from carbonization of epoxy resin film, giving a strong interaction of Al and carbon phase, as compared to that of the Al foam adhered with graphene by PVDF. In addition, to fully explore the potential of ILs electrolyte with large ion size, mesoporous carbon electrode was adopted here for a rapid ion diffusion across mesopores. Thus, the new structure SCs pouch consisting of mesoporous carbon electrode, ILs electrolyte and carbon coated-3D Al foam current collector was for the first time fabricated in the present work. Based on the as-made different pouches with capacity of 37 F, their time dependent electrochemical properties, including cyclic voltammetric (CV) response, galvanostatic charge and discharge behaviors, capacitance, contact resistance, and electrochemical impedance spectroscopic (EIS) characteristics were studied by accelerating aging test at 65 oC for 500 h at 3 V. The former pouch of Al foam coated with amorphous carbon layer exhibited far higher capacitance retention as compared to the pouch of Al foam adhered with graphene layer. Detailed fitting of ESR was made, and the contact resistance, charge transfer resistance, and Warburg resistance were analyzed thoroughly, providing deep insight into the strong C-Al interface effect on the high and stable performance of SCs with high energy density. Characterization of electrode sheet before and after 500 h aging test confirmed the above results. The high temperature and high voltage condition made the graphene-pasted Al foam unreliable. But the in situ coated carbon layer on Al foam exhibited relatively strong interaction and a reliable structure for the stable operation of the SCs pouch during the aging test. These solid data provide sufficient information for the further optimization of the high voltage SCs toward high energy density, high power density and long cycling time.
Xuan Ji, Jia-Yu Wang, An-Bang Wang, Wei-Kun Wang, Ming Yao, Ya-Qin Huang. Preparation of Highly-Cyclized Sulfurized Polyacrylonitrile for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2022, 28(12): 2219010.
DOI:10.13208/j.electrochem.2219010
Sulfurized polyacrylonitrile (SPAN) is regarded as an attractive cathode candidate of lithium-sulfur (Li-S) batteries for its non-dissolution mechanism and effective alleviation of polysulfides shuttling issue in Li-S batteries, displaying high utilization of cathode active material, outstanding cycle stability and structural stability. However, the relation between cyclization degree and cycle stability of SPAN is still unveiled. In this work, SPAN-C-V composites were synthesized by co-introduction of CuSO4 and zinc n-ethyl-n-phenyldithiocarbamate (ZDB) in the co-heating of sulfur and polyacrylonitrile. The co-introduction of CuSO4 and ZDB reduced the cyclization reaction onset temperature of PAN while increased the C—C/C=C within SPAN-C-V, thus led to an increase in the degree of cyclization of SPAN-C-V, achieving excellent electrochemical performance by simultaneously improving the cyclization degree and increasing the content of sulfur. The SPAN-C-V exhibited an initial reversible capacity of 805 mAh·g-1 and 601 mAh·g-1 after 100 cycles with the capacity retention rate of 93% at 0.2 C (1 C = 600 mAh·g-1). The focus on the cyclization degree of SPAN provides an enlightenment of advanced cathode material.
《电化学》(Journal of Electrochemistry,简称J. Electrochem.)1995年由田昭武院士、查全性院士和吴浩青院士等创办,为中国化学会电化学专业委员会会刊,是中国第一个、也是唯一的融基础理论研究与技术应用为一体的电化学专业学术期刊,由中国科学技术协会主管、中国化学会和厦门大学共同主办,2022年变更为月刊,向国内外公开发行。《电化学》旨在及时反映我国电化学领域的最新科研成果和动态,促进国内、国际的学术交流。《电化学》遵循国际通行的办刊惯例,实行主编、副主编负责制,所有刊出稿件均必须经过同行评议。