查看原文
其他

单细胞转录组数据分析的时候可以加上wgcna

生信技能树 单细胞天地 2022-06-07

WGCNA分析大家都不陌生了,我在生信技能树多次写教程分享WGCNA的实战细节:

那些教程都是针对传统的bulk转录组测序的表达矩阵,其实单细胞转录组也是拿到表达矩阵,只不过是有一些特性,比如非常多的0值等等。那么有没有这样的研究尝试把WGCNA融入单细胞转录组数据分析呢?

答案是有的,Posted March 04, 2019. 丢在预印本的文章,题目是:[Single-Cell RNA Sequencing Reveals Regulatory Mechanism for Trophoblast Cell-Fate Divergence in Human Peri-Implantation Embryo](Single-Cell RNA Sequencing Reveals Regulatory Mechanism for Trophoblast Cell-Fate Divergence in Human Peri-Implantation Embryo) 就这样做了,让我们一起来看看吧。

背景

To obtain transcriptomic profiles of human trophoblast cells during peri-implantation development, we harvested single cells from 19 embryos from day 6 to day 10, complement with 25 endometrial cells. Transcriptomes from 614 single cells were successfully profiled, with 0.7 million uniquely mapped reads and 24,011 detected transcripts per cell on average.数据都是在:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125616

主要样品是人类着床前胚胎的 Trophoblasts 进行单细胞转录组测序,其中516 embryonic cells 可以分成476 TE-, 14 EPI-and 26 PE-lineage cells.  最后的分析重点是 476 individual trophoblast cells isolated from 19 human embryos

  • cells of epiblast (EPI),

  • primitive endoderm q (PE)

  • trophectoderm (TE)

当然了,还有少量的endometrial cells,第一主成分就可以区分开来它们,如下:


Embryonic cells were assigned into three lineages, namely TE, EPI and PE, based on their expression of 300 previous identified lineage marker genes. 需要相关生物学知识。

其中时间这个属性也是在PCA上面反映到:


不管是时间这个属性天然对单细胞分组,还是整体的表达矩阵进入单细胞数据分析流程后分组, 都是可以看基因表达量情况的小提琴图等等。分析其实仍然是我们一直讲解的R包及基础流程,分别是: scater,monocle,Seurat,scran,M3Drop 需要熟练掌握它们的对象,:一些单细胞转录组R包的对象  流程也大同小异:

  • step1: 创建对象

  • step2: 质量控制

  • step3: 表达量的标准化和归一化

  • step4: 去除干扰因素(多个样本整合)

  • step5: 判断重要的基因

  • step6: 多种降维算法

  • step7: 可视化降维结果

  • step8: 多种聚类算法

  • step9: 聚类后找每个细胞亚群的标志基因

  • step10: 继续分类

WGCNA步骤

To systematically investigate the genetic program dynamics, we performed Weighted Gene Co-expression Network Analysis (WGCNA) on 2,464 genes that were variably expressed in trophoblast cells between different developmental stages.

WGCNA identified eight gene modules, each of which contains a set of genes that tend to be coexpressed at a certain development stage!

可以看到WGCAN其实大家需要注意的是挑选基因,然后判断模块,最后关联起来性状即可!


研究者感兴趣的生物学组别

其实是:

  • cytotrophoblast (CT),

  • extravillous cytotrophoblast (EVT)

  • syncytiotrophoblast (ST)

所以才会有如下图表:


让我意外的是,文章里面仅仅是提到了 Seurat 流程,没有monocle,但是却有lineage分析 !其实这个小鼠发育研究,跟我前面的视频课程非常类似,可以作为一个练习题,考核一下大家!

往期精彩








如果你对单细胞转录组研究感兴趣,但又不知道如何入门,也许你可以关注一下下面的课程


单细胞天地欢迎你




您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存