【有机】二氟/三氟甲基吡啶类化合物的合成研究进展
自Korner(1869年)和Dewar(1871年)确定了吡啶环的结构以来,吡啶及其衍生物作为一类独特的含氮杂环化合物,也是研究最多的杂环芳烃之一。同时,吡啶及其衍生物已被应用在不同的化学领域。在配位化学中,吡啶因其结构中的氮原子,可作为螯合金属离子的N-配体[1-4],也可作为高效的有机金属催化剂[5]。吡啶类化合物同样在材料化学和超分子化学等领域也取得了不错研究成果[6]。其次,吡啶类化合物因其特殊的生物活性而吸引了科学家的研究兴趣。在天然活性分子中,吡啶结构单元多存在于倍半萜、生物碱和多肽等复杂天然分子中。同时,含有吡啶结构单元的药物分子往往具有良好的药用价值和广泛的药理功效,且有62种含吡啶结构单元的药物分子作为临床或上市药物[7,8]。在农用化学品方面,含有吡啶结构单元的农药分子具有对环境友好且选择性高等特点,常用作除草剂、杀菌剂和杀虫剂等[9]。
图1 含有二氟甲基吡啶结构的活性分子
传统制备二氟甲基吡啶的方法,是由SF4或DAST及其衍生物对吡啶甲醛的脱氧氟化反应[24-26]。然而,该方法会使用有毒、具有腐蚀性的氟化试剂,反应条件苛刻,底物范围受限等缺点,极大地限制了这些试剂在二氟甲基吡啶衍生物制备中的应用。随着氟化试剂的发展,大多数二氟甲基试剂,如BrCHF2,[27] RMCHF2 (M = Sn, Zn, Ag)[28-31], TMSCF2X (X = H, COOEt)[32,33], CHF2COOH,[34] (CHF2SO2)2Zn[35],已被用于二氟甲基吡啶的合成中,这些合成方法使二氟甲基吡啶及其衍生物的制备取得了很大的进展。
图3 三氟甲基查尔酮为合成砌块的制备二氟甲基吡啶的反应研究
前面论述的制备方法均是利用三氟甲基合成砌块得到三氟甲基二氢吡啶衍生物,随后在碱的作用下,发生脱氟反应,制备得到相应的二氟甲基吡啶化合物。然而,使用二氟甲基合成砌块来构筑二氟甲基吡啶化合物的研究开展较晚。2014年,Desrosiers课题组选择二氟乙酸为合成砌块,通过多步的de novo反应合成了2-二氟甲基吡啶酯类化合物[38](图4)。
图4 二氟乙酸作为合成砌块制备二氟甲基吡啶的反应研究
在有机合成中,α,β-炔酮类化合物常用于构筑杂环化合物的合成砌块[38]。2021年,胡雨来课题组选择二氟甲基-α,β-炔酮为二氟甲基合成砌块,通过Bohlmann-Rahtz反应实现了多取代的6-二氟甲基吡啶衍生物,并且吡啶衍生物通过后官能团化制备得到具有潜在生物活性的二氟甲基芴类衍生物[39](图5)。
图5 二氟甲基炔酮作为合成砌块制备二氟甲基吡啶的反应研究
图6 含有三氟甲基吡啶结构的药物及农药分子
基于三氟甲基吡啶衍生物在农药化学中的重要性,开发简便高效的构筑三氟甲基衍生物的方法是很有必要的。早期,三氟甲基吡啶的合成方法是利用氟氯交换[46]。该方法是第一例实现三氟甲基吡啶合成方法,需要使用有毒的氯气和腐蚀性强的氟化氢,反应条件苛刻且对反应设备要求较高。利用三氟甲基试剂对吡啶环的直接三氟甲基化是行之有效的。其中常见的三氟甲基化试剂主要有TMSCF3[47,48],CuCF3[49],Tongi试剂[50],CF3SO2Cl[51],Langlois试剂[52]和CF3COOH[53]。
图7 三氟甲基烯酮醚作为合成砌块制备吡啶类农化产品的研究
查尔酮类衍生物本身具有良好的药物活性,可用于癌症及肿瘤的治疗[54]。同时,其在有机合成中也受到了极大地关注。三氟甲基查尔酮是一类经典构建三氟甲基化合物的合成砌块。李兴伟课题组和白大昌课题组利用铜催化下肟酯的[3+3]环加成反应,分别制备了4-三氟甲基取代和4-五氟乙基取代的吡啶类化合物,反应具有较好的底物适用性以及优异的区域选择性[37,55](图8)。
图8 三氟甲基查尔酮作为合成砌块制备三氟甲基吡啶的反应研究
三氟乙酰丙酮是重要的有机合成中间体,由于其在结构和生物学上独特的性质,使其在有机化学、分析化学、配位化学、材料化学和生物化学中有着重要作用[56]。同时,三氟乙酰丙酮类衍生物也可用于三氟甲基吡啶类化合物的构建。反应过程通过不同的氮源,可实现4-三氟甲基或6-三氟甲基吡啶的合成[57-61](图9)。
图9 三氟甲基乙酰丙酮衍生物作为合成砌块制备三氟甲基吡啶的反应研究
三氟乙酸在有机合成中常作为基团的保护/脱保护的试剂、反应的脱水剂及环化反应的催化剂等[62]。早期,姜标课题组选用三氟乙酸乙酯作为含氟砌块,通过多步反应实现了4-三氟甲基吡啶的合成,且该化合物也是转换为其他类型三氟甲基吡啶的精细化产品的起始原料[46,63](图11)。
图10 三氟乙酸乙酯作为合成砌块制备三氟甲基吡啶及转化研究
最近,翁志强课题组利用三氟乙酸酐及衍生物作为含氟合成砌块,实现了多类含氟以及三氟甲基化合物的构建[64-66]。在这一系列的研究中,该课题组利用商业易得氟代乙酸酐作为含氟砌块,实现了4-氟代吡啶衍生物构筑。该制备反应条件温和,底物的官能团耐受性高等特点[67](图11)。
图11 三氟乙酸乙酯作为合成砌块制备三氟甲基吡啶及转化研究
α,β-炔酮也是构建吡啶类衍生物的重要合成砌块[68,69]。三氟甲基炔酮也常被应用于吡唑,喹啉和嘧啶等杂环化合物的构建[70]。胡雨来课题组扩展了三氟甲基炔酮的应用范围,通过Bohlmann-Rahtz环化反应实现了三氟甲基吡啶衍生物的构建,且相应的三氟甲基吡啶化合物通过后续的官能团化,可转化为三氟甲基芴酮衍生物[71](图12)。
图12 三氟甲基炔酮作为合成砌块制备三氟甲基吡啶的反应研究
参考文献:
[1] BORA D, DEB B, et al. Dicarbonyliridium(I) complexes of pyridine ester ligands and their reactivity towards various electrophiles[J]. Inorg. Chim. Acta. 2010, 363(7): 1539-1546.
[2] ZHOU M-D, JAIN K R, et al. Bidentate Lewis Base Adducts of Methyltrioxidorhenium(VII): Ligand Influence on Catalytic Performance and Stability[J]. Eur. J. Inorg. Chem. 2009, 2009(20): 2907-2914.
[3] CHAN Y-T, MOOREFIELD C N, et al. Unexpected Isolation of a Pentameric Metallomacrocycle from the FeII-Mediated Complexation of 120° Juxtaposed 2,2′:6′,2′′-Terpyridine Ligands[J]. Chem. Eur. J. 2010, 16(6): 1768-1771.
[4] HUSSON J, KNORR M. 2,2′:6′,2″-Terpyridines Functionalized with Thienyl Substituents: Synthesis and Applications[J]. J. Heterocycl Chem. 2012, 49(3): 453-478.
[5] JARUSIEWICZ J, YOO K, JUNG K. Highly Regioselective Heck Coupling Reactions of Aryl Halides and Dihydropyran in the Presence of an NHC-Pyridine Ligand[J]. Synlett 2009, 3, 482-486.
[6] DE RUITER G, LAHAV M, et al. Pyridine Coordination Chemistry for Molecular Assemblies on Surfaces[J]. Acc. Chem. Res. 2014, 47(12): 3407-3416.
[7] VITAKU E, SMITHD T, et al. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals[J]. J. Med. Chem. 2014, 57(24): 10257-10274.
[8] BAUMANN M, BAXEENDALE I R. An Overview of the Synthetic Routes to the Best Selling Drugs Containing 6-Membered Heterocycles[J]. Beilstein J. Org. Chem. 2013, 9, 2265.
[9] REN M, NIU J, et al. Block of Kir Channels by Flonicamid Disrupts Salivary and Renal Excretion of Insect Pests[J]. Insect Biochem Mol. Biol. 2018, 99, 17-26.
[10] MEI H, HAN J, et al. Fluorine-Containing Drugs Approved by the FDA in 2018[J]. Chem. Eur. J. 2019, 25(51): 11797-11819.
[11] MEANWELL N A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design[J]. J. Med. Chem. 2018, 61(14): 5822-5880.
[12] Fujiwara T, O’Hagan D. Successful Fluorine-containing Herbicide Agrochemicals[J]. J. Fluorine. Chem. 2014, 167, 16-29.
[13] Jeschke P. The Unique Role of Halogen Substituents in the Design of Modern Agrochemicals[J]. Pest Manage Sci. 2010, 66(1): 10-27.
[14] 张寅生. 生物电子等哌替二氟甲基在药物化学中的应用及其化学合成方法进展[J]. 药物学报 2021, 56(8): 2182-2196.
[15] ZAFRANI Y, YEFFET D, et al. Difluoromethyl Bioisostere: Examining the “Lipophilic Hydrogen Bond Donor” Concept[J]. J. Med. Chem. 2017, 60(2): 797-804.
[16] SESSLER C D, RAHM M, et al. CF2H, a Hydrogen Bond Donor[J]. J. Am. Chem. Soc. 2017, 139(27): 9325-9332.
[17] ZAFRANI Y, SAPHIER S, et al. Utilizing the CF2H moiety as a H-bond-donating group in drug discovery[J]. Future Med. Chem. 2020, 12(5): 361-365.
[18] FENG Z, XIAO Y-L, et al. Transition-Metal (Cu, Pd, Ni)-Catalyzed Difluoroalkylation via Cross-Coupling with Difluoroalkyl Halides[J]. Acc. Chem. Res. 2018, 51(9): 2264-2278.
[19] RONG J, NI C, et al. Metal-Catalyzed Direct Difluoromethylation Reactions[J]. Asian J. Org. Chem. 2017, 6(2): 139-152.
[20] YERIEN D, BARATA-VALLEJO S, et al. Difluoromethylation Reactions of Organic Compounds[J]. Chem. Eur. J. 2017, 23(59): 14676-14701.
[21] GOURE W F, LESCHINSKY K L, et al. Synthesis and Herbicidal Activity of N-Substituted 2,6-Bis(polyfluoromethyl)dihydropyridine-3,5-dicarboxylates[J]. J. Agric Food Chem. 1991, 39(5): 981-986.
[22] LEE F L, STIKES G L, et al. Synthesis of a New Class of Pyridine Herbicide[J]. Pestic Sci. 1991, 31(4): 555-568.
[23] RAGEOT D, THOMAS B, et al. Scalable, Economical, and Practical Synthesis of 4(Difluoromethyl)pyridin-2-amine, a Key Intermediate for Lipid Kinase Inhibitors[J]. Org. Process Res. Dev. 2019, 23(11): 2416-2424.
[24] HASS A, SPITZER M, et al. Synthese seitenkettenfluorierter aromatischer Verbindungen und deren chemische Reaktivitat[J]. Chem. Ber. 1988, 121(7): 1329-1340.
[25] SUBOTA A I, RYABUKHIN S V, et al. An approach to the synthesis of 3-substituted piperidines bearing partially fluorinated alkyl groups[J]. J. Fluorine Chem. 2019, 224, 61-66.
[26] MELVIN P R, FERGUSON D M, et al. Room Temperature Deoxyfluorination of Benzaldehydes and αKetoesters with Sulfuryl Fluoride and Tetramethylammonium Fluoride[J]. Org. Lett.2019, 21(5): 1350-1353.
[27] BACAUANU V, CARDINAL S, et al. Metallaphotoredox Difluoromethylation of Aryl Bromides [J]. Angew. Chem. Int. Ed. 2018, 57(38): 12543-12548.
[28] PRAKASH G KS, GANESH S K, et al. Copper-Mediated Difluoromethylation of (Hetero)aryl Iodides and Styryl Halides with Tributyl(difluoromethyl)stannane[J]. Angew. Chem. Int. Ed.2012, 51(48): 12090-12094.
[29] XU L, VICIC D. Direct Difluoromethylation of Aryl Halides via Base Metal Catalysis at Room Temperature [J]. J. Am. Chem. Soc. 2017, 139(10): 3917.
[30] LU C, GU Y, et al. Palladium-catalyzed difluoromethylation of heteroaryl chlorides, bromides and iodides[J]. Chem. Sci. 2017, 8, 4848-4852.
[31] ZHAO H, HERBERT S, et al. Two Ligands Transfer from Ag to Pd: En Route to (SIPr)Pd(CF2H)(X) and Its Application in One-Pot C-H Borylation/Difluoromethylation[J]. J. Org. Chem. 2020, 85(5): 3596-3604.
[32] JIANG X-L, CHEN Z-H, et al. Copper-mediated difluoromethylation of electron-poor aryl iodides at room temperature[J]. Org. Chem. Front. 2014, 1(7): 774-776.
[33] FUJIKAWA K, KOBAYASHI A, et al. An Efficient Route to Difluoromethylated Pyridines[J]. Synthesis 2012, 44(19): 3015-3018.
[34] TUNG T T, CHRUSTENSEN S R, et al. Difluoroacetic Acid as a New Reagent for Direct C-H Difluoromethylation of Heteroaromatic Compounds[J]. Chem. Eur. J. 2017, 23(72): 18125-18128.
[35] FUJIWARA Y, DIXON J A, et al. Practical and innate carbon–hydrogen functionalization of heterocycles[J]. Nature 2012, 492, 95-99.
[36] KATSUYAMA I, FUNABIKI K, et al. A Convenient Synthesis of Difluormethyl-substituted Pyridines[J]. Synlett 1997, 5, 591-592.
[37] BAI D, WANG X, et al. Redox-Divergent Synthesis of Fluoroalkylated Pyridines and 2-Pyridones through Cu-Catalyzed N-O Cleavage of Oxime Acetates[J]. Angew. Chem. Int. Ed. 2018, 57(22): 6633-6637.
[38] DESROSIER J-N, KELLY C-B, et al. A Scalable and Regioselective Synthesis of 2Difluoromethyl Pyridines from Commodity Chemicals[J]. Org. Lett. 2014, 16(6): 1724-1727.
[39] YANG T, DENG Z, et al. Access to 6-difluoromethylpyridines by ZnBr2-catalyzed cascade michael addition/ annulation[J]. Tetrahedron, 2021, 79, 131833-131840.
[40] ZDRAZIL B, GUHA R. The rise and fall of a scaffold: A trend analysis of scaffolds in the medicinal chemistry literature[J]. J. Med. Chem. 2018, 61(11): 4688−4703.
[41] ZHENG Z, DAI A, et al. Trifluoromethylpyridine: An Important Active Fragment for the Discovery of New Pesticides[J]. J. Agric. Food Chem. 2022, 10.1021/acs.jafc.1c08383.
[42] LAHM G P, DESAGER J, et al. The Discovery of Fluazaindolizine: A New Product for the Control of Plant Parasitic Nematodes[J]. Bioorg Med. Chem. Lett. 2017, 27(7): 1572-1575.
[43] WEI P, LIU Y, et al. Metabolic and Dynamic Profiling for Risk Assessment of Fluopyram, A Typical Phenylamide Fungicide Widely Applied in Vegetable Ecosystem[J]. Sci. Rep. 2017, 7, 41347.
[44] MAIRA S-M, PECCHI S, et al. Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I PI3-Kinase Inhibitor[J]. Mol. Cancer Ther. 2012, 11(2): 317-328.
[45] BURGER M T, PECCHI S, et al. Identification of NVP-BKM120 as A Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer[J]. ACS. Med. Chem. Lett. 2011, 2(10): 774-779.
[46] 曹晓峰, 张瑞峰. 三氟甲基吡啶在作物保护中的重要性[J]. 世界农药, 2018, 40(4): 7-14.
[47] GONDA Z, KOVACS S, et al. Efficient Copper-Catalyzed Trifluoromethylation of Aromatic and Heteroaromatic Iodides: The Beneficial Anchoring Effect of Borates[J]. Org. Lett. 2014, 16(16): 4268-4271.
[48] KREMLEV M M, MUSHTA A I, et al. Me3SiCF3/AgF/Cu−A New Reagents Combination for Selective Trifluoromethylation of Various Organic Halides by Trifluoromethylcopper, CuCF3[J]. J. Fluorine Chem. 2012, 133, 67-71.
[49] LIN X, LI Z, et al. Trifluoromethylation of (Hetero)aryl Iodides and Bromides with Copper(I) Chlorodifluoroacetate Complexes[J]. RSC. Adv. 2016, 6(79): 75465-75469.
[50] MEJIA E, TOGNI A. Rhenium-Catalyzed Trifluoromethylation of Arenes and Heteroarenes by Hypervalent Iodine Reagents[J]. ACS. Catal. 2012, 2(4): 521-527.
[51] NAGIB D A, MAXMILLAN S W C. Trifluoromethylation of Arenes and Heteroarenes by Means of Photoredox Catalysis[J]. Nature 2011, 480, 224-228.
[52] JI Y, BRUECKL T, et al. Innate C-H Trifluoromethylation of Heterocycles.[J] Proc. Natl. Acad. Sci. U. S. A. 2011, 108(35): 14411-14415.
[53] YANG X, SUN R, et al. Regioselective Direct C−H Trifluoromethylation of Pyridine[J]. Org. Lett. 2020, 22(18): 7108-7112.
[54] YANG H, SHIN H, et al. Structural requirement of chalcones for the inhibitory activity of interleukin[J]. Bioorg Med. Chem. 2007, 15(1): 104-111.
[55] 杨思琪, 李鑫等. 铜催化肟酯参与的[3+ 3]环加成反应合成 4-五氟乙基取代的吡啶类化合物[J]. 有机化学 2019, 39, 1623-1629.
[56] 戴佳亮, 徐卫国等. 三氟乙酰丙酮的合成与应用[J]. 有机氟工业 2015, 1, 38-44.
[57] FUNABIKI K, ISOMURA A, et al. Efficient and convenient entry to β-hydroxy-β-trifluoromethyl-β-substituted ketones and 2,6-disubstituted 4-trifluoromethylpyridines based on the reaction of trifluoromethyl ketones with enamines or imines[J]. J. Chem. Soc. Perkin Trans. 1 2001, 20: 2578−2582.
[58] IAROSHENKO V O, OSTROVSKYI D, et al. Synthesis of 4-Trifluoromethylpyridines by [5+1] cyclization of 3-hydroxy-pent-4-yn-1-ones with urea[J]. Adv. Synth. Catal. 2005, 355(2-3): 576-588.
[59] DE ROSA M, ARNOLD D, et al. Effect of Bronsted Acids and Bases, and Lewis Acid (Sn2+) on the Regiochemistry of the Reaction of Amines with Trifluoromethyl-β-diketones: Reaction of 3-Aminopyrrole to Selectively Produce Regioisomeric 1H-Pyrrolo[3,2-b]-pyridines[J]. J. Org. Chem. 2015, 80(24): 12288-12299.
[60] HUANG H, CAI J, et al. Transition-Metal-Free N−O Reduction of Oximes: A Modular Synthesis of Fluorinated Pyridines[J]. Org. Lett. 2017, 19(14): 3743-3746.
[61] DU X-X, ZI Q-X, et al. An Environmentally Benign Multi-Component Reaction: Regioselective Synthesis of Fluorinated 2-Aminopyridines Using Diverse Properties of the Nitro Group[J]. Green Chem. 2019, 21(6): 1505-1516.
[62] NORRIS M D. Trifluoroacetic Acid (TFA) [J]. Synlett 2015, 26(3): 418-419.
[63] JIANG B, XIONG W, et al.Convenient Approaches to 4-Trifluoromethylpyridine[J]. Org. Process Res. Dev. 2001, 5(5): 531-534.
[64] LIN B, WU W, WENG Z. Synthesis of 3-perfluoroalkyl-substituted 1,2,4-triazinones through copper(I)-catalyzed interrupted click reaction [J]. Tetrahedron 2019, 75(19): 2843-2847.
[65] CHEN T, WU W, WENG Z. Visible-light photoredox catalyzed synthesis of polysubstituted furfuryl trifluoroacetamide derivatives [J]. Tetrahedron 2019, 75(51): 130751.
[66] YUAN Z, CHEN S, WENG Z, et al. Copper-catalyzed synthesis of trifluoromethylated bis(indolyl)arylmethanes from 2-arylindoles and 2,2,2-trifluoroacetohydrazide [J]. Org. Chem. Front. 2020, 7(3): 482-486.
[67] WANG Z, YOU C, WANG C, et al. Perfluorocarboxylic Anhydrides Triggered Cyclization: Access to 4-Perfluoroalkylpyridines [J]. J. Org. Chem. 2019, 84(22): 14926-14935.
[68] AULAKH V S, CIUFOLINI M, A. Total Synthesis and Complete Structural Assignment of Thiocillin I [J]. J. Am. Chem. Soc. 2011, 133(15): 5900-5904.
[69] AULAKH V S, CIUFOLINI M, A. An Improved Synthesis of Pyridine-Thiazole Cores of Thiopeptide Antibiotics [J]. J. Org. Chem. 2009, 7(15): 5750-5753.
[70] ZHANG C.Synthesis of trifluoromethyl or trifluoroacetyl substituted heterocyclic compounds from trifluoromethyl-α,β-ynones[J]. J. Chin. Chem. Soc. 2022, 69(4):594-603.
[71] YANG T, DENG Z, et al. Synthesis of
Polysubstituted Trifluoromethylpyridines from
Trifluoromethyl-α,β-ynones[J]. J. Org. Chem. 2020, 85(2): 924-933.
●南开大学汪清民课题组Org. Lett.:光催化的烷基硅烷脱氢构筑γ,γ-偕二氟烯丙基硅
●河南师范大学郭海明教授课题组Org. Lett.:铑催化6-芳基嘌呤核苷和炔烃环化构建荧光多环嘌呤盐
●云南民族大学黄超课题组OL:Cu(I)催化碱促进2-硝基查尔酮与脂肪族伯胺进行[5+2+1]级联环化反应构筑嘧啶并吲哚骨架