network3D: 交互式桑基图
桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。
也可以视为一种层级网络图,比如展示上一篇文章中的生物信息课程网络图;也可以展示菌群随时间变化的趋势,如3分和30分文章差距在哪里文章所示哈扎人肠道菌群的季节变化规律。
下面将用2个例子,以我们生物信息研讨班涉及的学习框架和课程分配为示例数据,展示如何用常见网络图数据绘制桑基图。
最简单桑基图
第一列为上游
,第二列为下游
,第三列为联通值,值越大线越粗。如果您自己有数据,只需要替换输入部分,后面数据格式转换代码是通用的。
network <- "Src;Target;Value
Bioinfo;Biology;20
Bioinfo;Math;20
Bioinfo;Program;20
Bioinfo;NGS;20
Program;Linux;8
Program;Python;8
Program;R;6
NGS;RNAseq;1
NGS;ChIPseq;1
NGS;m16Sseq;1
NGS;Metagenome;1
NGS;SingeCellSeq;1
NGS;DNAmethylseq;1
NGS;lncRNA;1
NGS;Exomeseq;1
NGS;TCGA;1
"
network <- read.table(text=network, sep=";", header=T, row.names=NULL, quote="", comment="")
network <- network[,1:3]
colnames(network) <- c("Src", "Target", "Value")
# 转换原始数据点为0起始的一系列整数表示
factor_list <- sort(unique(c(levels(network$Src), levels(network$Target))))
num_list <- 0:(length(factor_list)-1)
levels(network$Src) <- num_list[factor_list %in% levels(network$Src)]
levels(network$Target) <- num_list[factor_list %in% levels(network$Target)]
network$Src <- as.numeric(as.character(network$Src))
network$Target <- as.numeric(as.character(network$Target))
attribute <- data.frame(name=c(factor_list))
network
Src Target Value
1 2 20
1 8 20
1 11 20
1 10 20
11 6 8
11 12 8
attribute
head(attribute[, 1])
[1] 16Sseq Bioinfo Biology ChIPseq DNAmethylseq
[6] Exomeseq
sankeyNetwork(Links = network, Nodes = attribute,
Source = "Src", Target = "Target",
Value = "Value", NodeID = "name",
fontSize= 12, nodeWidth = 30)
点线分组桑基图
网络数据比上一步的桑基图多一列,指示线的属性;再提供一个节点分组信息文件,获得层次更鲜明的桑基图。
只需要修改对应的数据,后面格式转换的代码通用。
network <- "Src;Target;Value;Link_Grp
Bioinfo;Biology;20;Main
Bioinfo;Math;20;Main
Bioinfo;Program;20;Main
Bioinfo;NGS;20;Main
Program;Linux;8;Sub
Program;Python;8;Sub
Program;R;6;Sub
NGS;RNAseq;1;Sub
NGS;ChIPseq;1;Sub
NGS;16Sseq;1;Sub
NGS;Metagenome;1;Sub
NGS;SingeCellSeq;1;Sub
NGS;DNAmethylseq;1;Sub
NGS;lncRNA;1;Sub
NGS;Exomeseq;1;Sub
NGS;TCGA;1;Sub
"
network <- read.table(text=network, sep=";", header=T, row.names=NULL, quote="", comment="")
network <- network[,1:4]
colnames(network) <- c("Src", "Target", "Value", "Link_Grp")
factor_list <- sort(unique(c(levels(network$Src), levels(network$Target))))
num_list <- 0:(length(factor_list)-1)
levels(network$Src) <- num_list[factor_list %in% levels(network$Src)]
levels(network$Target) <- num_list[factor_list %in% levels(network$Target)]
network$Src <- as.numeric(as.character(network$Src))
network$Target <- as.numeric(as.character(network$Target))
# 只需要前两列
attribute <- "name;group;size
Bioinfo;Class;4
Biology;Class;4
Math;Class;4
Program;Class;4
NGS;Class;4
Linux;On;2
Python;Off;2
R;Off;2
RNAseq;Off;1
ChIPseq;On;1
16Sseq;On;1
Metagenome;On;1
SingeCellSeq;InPrepare;1
DNAmethylseq;InPrepare;1
lncRNA;InPrepare;1
Exomeseq;InPrepare;1
TCGA;InPrepare;1"
attribute <- read.table(text=attribute, sep=";", header=T, row.names=NULL, quote="", comment="")
attribute <- attribute[,1:2]
colnames(attribute) <- c("name", "group")
attribute <- attribute[match(factor_list, attribute$name),]
sankeyNetwork(Links = network, Nodes = attribute,
Source = "Src", Target = "Target",
Value = "Value", NodeID = "name",
NodeGroup = "group", LinkGroup = "Link_Grp",
fontSize= 14, nodeWidth = 30)
桑基图还有类似的称为冲击图 (alluvial diagram)的展示,具体可见ggalluvial:冲击图展示组间变化、时间序列和复杂多属性alluvial diagram。
说到交互式可视化,还有之前推出的:
精品回顾
(错误矫正基金:如果您在阅读过程中发现文字或命令错误,请留言或加小编微信指出,获取红包或累积奖励。希望大家多监督,反馈。适用于所有原创文章。)