查看原文
其他

微积分的来历

点击关注 数学与自然 2022-07-17

本公众号大约有300多篇优质讲座课件,可关注公众号后,查看历史消息

推荐阅读点击下方相应标题即可跳转阅读全文

人教社专家权威解读新教材:一至十章教材介绍课件

细节决定成败,考场各种突发问题应对36计,有备无患

李文革——“数学试题”命制技术(附两本命题书供参考)

建议收藏:高中各科思维导图汇总

数学科普知识讲座:神奇的圆锥曲线(含PPT)

史宁中:基于学科核心素养的数学课程标准(含PPT)

从核心素养到学生智能的培养(含PPT)

微积分有多重要相信大家多多少少心里都有点数,搞数学的不会微积分就跟中学生不会“加减乘除”一样,基本上啥都干不了。牛顿是物理学界的封神人物,然而牛顿还凭借着微积分的发明,跟阿基米德、高斯并称为世界三大数学家,这是何等荣耀?这又从侧面反映出微积分是何等地位?


除了重要,很多人对微积分的另一个印象就是难。在许多人眼里,微积分就是高深数学的代名词,就是高智商的代名词,许多家长一听说谁家孩子初中就学了微积分,立马就感叹这是别人家的天才。其实不然,微积分并不难,它的基本思想甚至是非常简单的,不然也不会有那么多初中生学习微积分的事了。


从面积说起



不知道大家当时有没有想过一个问题:好像我们每学一种新图形就有一个新的面积公式,可是,世界上有无数种图形啊,难道我要记无数种公式么?这太令人沮丧了!


更令人沮丧的是,还有很多图形根本就没有什么面积公式。比如我随手在纸上画一条曲线,这条曲线围成的面积你要用什么公式来算?但是,它确实围成了一块确定大小的区域啊,大小是确定的就应该能算出面积来,算不出来就是你的数学不行,对吧?于是,这个事就深深地刺痛了数学家们高傲的内心,然后就有很多人来琢磨这个事,比如阿基米德。



如何求一条曲线围成的面积?

面对这个问题,古今中外的数学家的想法都是类似的,那就是:用我们熟悉的图形(比如三角形、长方形等)去逼近曲线围成图形的面积。这就好比在铺地板砖的时候,我们会用尽可能多的瓷砖去填满地板,然后这些瓷砖的面积之和差不多就是地板的面积。

阿基米德首先考虑抛物线:如何求抛物线和一条直线围成的面积?抛物线,顾名思义,就是你往天上抛一块石头,这块石头在空中划过的轨迹。如下图的外层曲线:

这条抛物线和直线BC围成了一个弓形(形状像一把弓箭,涂了颜色的部分),这个弓形的面积要怎么求呢?阿基米德的想法是用无数个三角形去逼近这个弓形,就好像我们用很多三角形的瓷砖去铺满这块弓形的地板一样。

他先画了一个蓝色的大三角形ABC(这个三角形并不是随意画的,抛物线在A点处的切线必须跟BC平行。这里我们不细究,只要知道能够画出这样一个三角形就行)。当然,这个三角形ABC的面积肯定比弓形的面积小,小多少呢?显而易见,小了左右两边两个小弓形的面积。

如果我们能把这两个小弓形的面积求出来,加上三角形ABC就可以求出原来大弓形的面积了。但是,如何求这两个小弓形的面积呢?答案是:继续用三角形去逼近!

于是,阿基米德又使用同样的方法,在这两个小弓形里画了两个绿色的三角形。同样的,在这两个小弓形被两个绿色三角形填充之后,我们又多出了四个弓形,然后我们又用四个黄色的三角形去填充剩余的弓形……

很显然,这个过程可以无限重复下去。我们可以用1个蓝色,2个绿色的,4个黄色的,8个红色的等无穷多个三角形来逼近这个弓形。我们也能很直观地感觉到:我们使用的三角形越多,这些三角形的面积之和就越接近大弓形的面积。用三角形的面积之和来逼近这个弓形面积,这我没意见,但关键是你要怎样求这么多三角形(甚至是无穷多个三角形)的面积呢?

这就是阿基米德厉害的地方,他发现:每次新画的三角形的面积都是上一轮三角形面积的1/4。也就是说,2个绿色三角形的面积之和刚好是1个蓝色三角形面积的1/4;4个黄色的三角形的面积之和刚好是2个绿色三角形的1/4,那么就是1个蓝色三角形面积的1/16,也就是(1/4)²……

如果我们把所有三角形的面积都折算成第一个蓝色三角形ABC(用△ABC表示)的面积,那么大弓形的面积S就可以这样表示:

S=△ABC+(1/4)△ABC+(1/4)²△ABC +(1/4)³△ABC……

这东西放在今天就是一个简单的无穷级数求和问题,但阿基米德是古希腊人,那是秦始皇都还没统一中国的年代,什么高等数学更是不存在的,怎么办呢?

阿基米德计算了几项,直觉告诉他这个结果在不断地逼近(4/3)△ABC,也就是说你用的三角形越多,面积S就越接近(4/3)△ABC。于是阿基米德就猜测:如果我把无穷多个三角形的面积都加起来,这个结果应该刚好等于(4/3)△ABC。

当然,光猜测是不行的,数学需要的是严格的证明,然后阿基米德就给出了证明。他证明如果面积S大于(4/3)△ABC会出现矛盾,再证明如果它小于(4/3)△ABC也会出现矛盾,所以这个面积S就只能等于(4/3)△ABC,证毕。

就这样,阿基米德就严格地求出了抛物线和直线围成的弓形的面积等于△ABC的4/3,他使用的这种方法被称为“穷竭法”。

往期精彩内容推荐,点击相应标题,即可阅读全文,此平台专注分享初高中数学优质资源,觉得有用,可关注,今后共同提高。

单墫教授:数学是思维的科学

单墫:数学学习与解题

数学大师陈省身的家教智慧:不是一定要读书才好

张景中院士:华为为什么要“囤”700名数学家

珍贵视频:华罗庚教授讲数学,能听懂

高考状元张景中院士的故事,看看五十年代的高考阅卷!

单墫教授解答高考数学全国2卷最后一题(手稿)

高中数学靠“悟”不靠“练”,在于“走心”但不能“心走”!

全国政协委员、中国联通研究院院长张云勇教授讲数学

高中数学2020年概率与统计培训视频

葛军:如何学好高中数学(PPT+视频)

开讲啦:张继平感受数学之美

西北工业大学数学与统计学院教授、博士生导师彭国华讲解高考数学命题

李海东:基于数学理解的数学教学(讲座视频+课件)

田刚院士讲座:数学内外(视频+课件)

老师,你教的东西有用吗?---教育的意义【值得观看】

袁亚湘院士的数学科普报告:数学漫谈,数学无处不在(附视频)

数学科普知识讲座:神奇的圆锥曲线(含PPT)

如何打磨数学试题 北京大教育考试评价中心

华东师大博导汪晓勤:数学符号史在高中数学教学中的应用与价值

数学教学——到底该教什么?
代钦教授:数学文化课(含PPT)


1

 往期精选 


部分文章推荐阅读,点相应标题即可跳转阅读全文,更多优质文章,可关注《妙解之慧》后,查看历史消息。


1:讲题应如何讲?

2:《妙解之慧》优质学习资源汇总(建议收藏)

3:建议收藏:高中各科思维导图汇总

4:数学科普知识讲座:神奇的圆锥曲线(含PPT)

5:高考全国卷试题分析及2020年备考策略

6:都在谈错题本,但真正好的有几个

7:学会分析,总结,利用好考试的试卷

8:章建跃:理解数学理解学生理解教学(含PPT)

9:写给疫情肆虐中的高三考生

10:高考命题、答题、阅卷过程中的隐藏套路

11:初中三年的数学定理整理汇总

12:小学数学50道经典应用题解题思路+模板

13:孩子不爱说话,并不只是内向那么简单

14:数学复习中的24个问题,你或许需要

15:超全初中物理错题本整理,拿走不谢!

16:数学:听课感觉能听懂,为什么一做题就蒙圈?

17:学习方法:寒假学好数学三部曲

18:赏析数学中的美,太漂亮了

19:干货!中考化学86个考点大汇总(收藏学习)

20:中学数学讲评课基本规范(含PPT)

21:初中英语语法汇总 (系统详细)

22:从核心素养到学生智能的培养(含PPT)

23:初中化学全册思维导图集合!在家自学必备!

24:教育教学中的心理学智慧和心理学效应(含PPT)

25:“我懂你”,用古诗词的23种说法,真的太美了!

26:张景中院士写给小学数学教师们:感受小学数学思想的力

27:章建跃:理解数学理解学生理解教学(含PPT)

28:章建跃:注重数学的整体性,提升系统思维水平(含PPT)

29:从核心素养到学生智能的培养(含PPT)

30:数学教学——到底该教什么?

目前设有初高中教师交流群,群里不定期公益分享一些优质的学习资源,不作任何利益,想要进群交流的朋友可,长按并识别下方二维码,添加微信,备注地区身份,通过验证后,回复需要进的群。

一点数学学习方法:

水有源题有根,茫茫题海寻根悟法方是岸,若将形形色色的试题分门别类,剖析其相似,相关性,同源性。探索一题多解,尝试一题多变,感悟多题共法,多做一些;基础和能力,运算和思维都好的妙题,再从解法探究,一般推广,类比延拓三个方面展开,深度研究,意在学会分析题意,转化问题,追根溯源,触类旁通,从静态的文本俩都想到动态的思维活动,把数学冰冷的美丽里,变成火热的思考,就能举一反三,跳出题海,精学一题,妙解一类,固化于型,内化于心,达到事半功倍,融会贯通,高效学习的目的!


写给学生:成功的路上没有捷径,需脚踏实地,一天进步一点,成在坚持,难再坚持,贵在坚持,自己不要放弃自己就行。

更多精彩内容,可长按并识别下方二维码,关注后查看历史消息。





                     

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存