两只小鼠的江湖 (一)
导读
这一系列讲述两个生物技术公司——GenPharm/Medarex和Abgenix的故事。它们是用转基因小鼠技术研发全人源单克隆抗体(单抗)药的先驱。今天单抗药的全球年销售额约1000亿美元,其中20%来自这两个公司的技术推出的产品,而且这个比例还在逐年增长。这个系列共分四篇,将于四个周末连载完。这是第一篇。 参考文献将在最后一篇文末列出。
2014年7月7日,百时美施贵宝(BMS)的Opdivo (简称O药)在日本被批准上市,用于治疗黑色素瘤。O药成为世界上第一个上市的靶向PD-1的抗体药。这一里程碑的事件标志着癌症免疫疗法在经历了百年挫折后终于登上世界中心舞台, 在聚光灯下开始发出耀眼的光芒。BMS的癌症科研资深副总裁纽斯●朗博 (Nils Lonberg)和北加州的同事们互相击掌庆贺。他们期待O药在美国也会很快被批准。但他们也知道,O药的竞争者,默沙东的Keytruda (简称K药), 随时也会通过美国FDA的审批。在生物制药行业中,竞争是常态。没有竞争的项目反而令人担忧——你认为是宝贝的项目,如果别人都不看好,那一定有他们的原因。
那天晚上,朗博辗转反侧,思绪万千。他想起1993年夏天他和团队看到小鼠DNA测序结果时欣喜若狂,打开香槟庆贺的场面。他想起96年他的科研团队只剩下两个人,他的公司为了生存而寄人篱下的那段最黑暗的日子。他想起2009年夏天他坐在约翰霍普金斯大学会议室里,看到O药(当时还叫MDX-1106)一期临床试验数据时经历的震撼和幸福。点点滴滴、起起伏伏的往事从心里的某个角落一股脑儿地都翻腾出来。像温泉中一串串不断上升的气泡一样,大大小小的瞬间争相浮出水面,接连绽放,融成一团温暖的水汽,包围着他,挟裹着他,滑入梦乡,飘回历史。
单克隆抗体技术的崛起和产业化
20世纪70年代初,分子生物学革命开始席卷世界。1973年DNA重组技术的建立直接导致了第一代生物技术公司的诞生。其中最著名的是基因泰克(Genentech)和安进(Amgen)。通过DNA重组技术, 这些公司首先摘取了生物药树上低悬着的果子,开发细胞因子和生长因子类蛋白药。安进赖以起家的是促红细胞生成素(epogen)和促白细胞生成素(neupogen)。 基因克隆公司最开始创收的两个产品是重组人源生长激素和胰岛素。
1975年,单克隆抗体杂交瘤技术诞生(César Milstein和George Köhler)。它孕育了第二代生物技术公司。
抗体是脊椎动物的免疫系统针对入侵抗原而产生的一大类蛋白质,通常在血液中发现。它们由B淋巴细胞产生,其主要功能是识别并结合特定的抗原,再通知免疫系统的其它成员。如果不考虑抗体种类转换的话,每个B细胞只产生一种抗体。 针对同一抗原,人体内一般总能找到一系列结合它的不同部位(表位)、拥有不同氨基酸序列的抗体。在血清中发现的这种针对同一抗原的天然抗体混合物被称之为多克隆抗体。每个正常人都有至少数百万种不同的抗体在血液中循环,可以结合不同抗原、不同表位。
让我们把抗体想象成在人的血液里飘浮着的成千上万个双齿的小叉。每个小叉的每个齿都可以黏结一个特定抗原的一个特定部位,这样一个双齿叉可以结合两个同样的抗原。抗原则可以是外来或病变的蛋白,甚至包括入侵病原体(真菌、细菌、病毒等)的RNA、DNA或多聚糖。
每个双齿小叉抗体(免疫球蛋白)由两个相同的长多肽(重链),和两个相同短多肽(轻链)组成。小叉与小叉之间在结构上的主要差异是位于齿端的可变区——这些可变区决定着抗体的抗原特异性。小叉的柄部由一系列氨基酸序列基本不变的区域组成——我们称之为恒定区。恒定区可以与细胞表面受体或补体系统蛋白相互作用,从而触发宿主效应功能(effector function),比如裂解入侵细胞或吞噬外来病原。简单来说,叉齿负责识别抗原,而叉柄则帮助宿主决定如何处置抗原。于此同时,重链的恒定区也决定抗体的种类(人体有五类抗体:A, D, G, E, 和M)。本文涉及的主要是免疫球蛋白G或IgG。
用双齿叉打比方只是一个简化的模型。实际上,抗体分子是很有弹性和柔性的,形状也不是明显的“Y”形。在电子显微镜下它看起来更像三个球堆成的“品”字。抗体是比较大的分子,分子量约在150KD左右,是水分子的8千多倍。它宽约4纳米,长约11纳米。如果把一个血小板细胞想象成一个西瓜那么大的话,那一个抗体分子只有西瓜籽那么大。
当抗体理论日益成熟时,科学家们自然想到下一个从科学到技术的飞跃:用抗体作为蛋白药来治疗癌症、感染等疾病。抗体药具有两个天然的优势:1)抗体和靶点可以高特异性地、紧密地结合,不会滥伤无辜。同小分子药相比,副作用小。2)IgG抗体在体内的半衰期长, 一次注射可以保持药效两、三周甚至超过一个月。
然而,把这一想法变成现实需要逾越几个障碍:1)除非在一些特殊的应用中,比如解毒、抗感染等等,多克隆抗体很难被开发为药物。要想保持药物的稳定性、重复性、和可靠性,单一分子的抗体或单克隆抗体(单抗)更适合用于治疗。2)从多克隆抗体中纯化和生产单克隆抗体的过程及其艰难和复杂。3)对于人体里的大部分靶蛋白,健康人的免疫系统不会把它们当成入侵蛋白,也就不会产生抗体。靶向人蛋白的抗体通常需要在其它动物中产生,比如小鼠。
单克隆抗体杂交瘤技术解决了这几个问题。表达特定单克隆抗体的杂交瘤细胞可以被筛选出来,并可无限地传代下去。这使针对某一靶点开发单抗药成为可能。由于两个发明人没有申请专利保护,新一代的生物技术公司纷纷以杂交瘤技术为基础,将其产业化。其中最著名的是位于美国圣地亚哥的Hybritech公司。它成立于1978年,之后在1986年被礼来收购。Hybritech把单抗技术主要应用在诊断方面,比如前列腺癌检测盒和怀孕测试盒。被礼来收购后,Hybritech的前员工又随风飘撒,落地生根,分头创建了大大小小数十家生物技术公司。可以说,今天在美国排名第三的圣地亚哥生物技术产业群(排名在北加州和波士顿地区之后)是由Hybritech公司缔造出来的。
单抗在治疗方面也开始了缓慢而稳定的进展。1986年,也就是在Niels Jerne, César Milstein和George Köhler凭借单抗杂交瘤技术获得诺贝尔奖后的第二年,强生的Orthoclone OKT3成为第一个被美国FDA批准的单抗药,用于防止肾脏移植后的宿主排斥。但直到9年以后,第二个抗体药——礼来和强生的ReoPro——才于1995年在美国上市,被用来抑制血栓形成。
第一个单克隆抗体药Orthoclone OKT3来自于小鼠,它的氨基酸序列都是鼠源的。鼠源抗体在给病人服用过程中常常遇到一些问题:1)人体把这些单抗药当作异体蛋白,会产生免疫排斥。2)免疫排斥使单抗药很快从病人体内被清除掉,大大降低了它们应有的疗效。尤其治疗慢性疾病需要长期服用的情况下,鼠源单抗药在后续注射时疗效甚微;3)少数病例中,鼠源抗体会引起严重的过敏反应,甚至导致了个别病人的死亡。因此,早期单抗药的销售始终没有腾飞——Orthoclone OKT3的年销售额仅有1千万美元左右。
单抗药要想在江湖上立足,要想在医学上有更广泛的应用,必须要转变成人源化抗体或人源抗体。
这里我们有必要区分一下人源化抗体和人源抗体。人源化抗体一般是以鼠源抗体为基础,通过更换蛋白片断和置换部分氨基酸序列, 使抗体的最终氨基酸序列更接近人源的。而人源抗体是任何能被人体B细胞表达的抗体,其氨基酸序列是100%由人的基因编码的。
20世纪90年代,以美国为主出现了几十家生物技术公司。他们个个身怀绝技——他们的技术平台都是围绕如何将抗体人源化或直接产生人源抗体而建立的,他们的目的都是将抗体药发扬光大。单抗药的江湖门派众多,但成长的道路基本都大致相同:前期凭借技术平台与大金主——跨国制药公司合作,通过对外转让技术或项目,获取资金继续壮大。中期开始由技术向产品转型,独立或半独立开发抗体药。到了后期,如果这些抗体药取得良好的临床数据,他们往往会被大公司吞并。新一代的生物技术公司又从大学的实验室里,或在被吞并公司的离职科学家、高管领导下成长起来,周而复始, 代代更替。波澜壮阔的历史画卷就此徐徐展开。
1985-2005年可以算作抗体药公司的春秋时代。专注单克隆抗体药物研发的众多生物技术公司之间有合作,有竞争。那段时期奠定了今天单抗药的辉煌——抗体药的全球年销售额如今已达到1000亿美元,相当于世界上排名第60名的国家(乌克兰)的GDP。
以研发抗体药为主的公司在当时的江湖上分两大流派。第一个流派可以称之为抗体蛋白工程派或人源化派。单抗在小鼠中产生后,它的部分氨基酸序列或被置换,或被拼接组合,其最终目的是既不引起人的免疫排斥,又不降低它对靶抗原的亲和性。这一流派又分为两个层次。第一个层次是嵌合抗体(Chimeric antibody): 抗体的恒定区都被置换成人的氨基酸序列。嵌合单抗蛋白约33%的氨基酸序列来自小鼠,其余67%为人源的。第二个层次是人源化抗体(Humanized antibody),即拿到针对某抗原的小鼠抗体后,只取其识别抗原的几段区域(CDR区域),把它们移植到人源抗体中。人源化单抗中人源的序列占90%。人源化单抗显然比嵌合单抗更有优势,引起免疫排斥或超敏的风险更低。人源化单抗技术的代表公司为Protein Design Labs, 或PDL。基因泰克几个著名的单抗药——Herceptin, Xolair, 和Avastin——的人源化都需要获得PDL的技术许可。人源化单抗技术最大的缺点是缺乏通用的方法。每个抗体分子的人源化,都需要个案分析、分子建模、大量的改造和试错。即使这样,由于鼠源序列的存在,人源化单抗还是不能完全避免免疫排斥或超敏的风险。
抗体药的第二个流派是全人源单抗。这一流派又分为两大门派:噬菌体展示和转基因小鼠。
用噬菌体展示技术产生抗体完全避免了动物的使用。在这一技术中,先通过PCR技术建立一个以噬菌体质粒为载体的、表达无数个人源抗体可变区的基因库。当大肠杆菌被这些质粒转染后,千百万个噬菌体被释放出来。每个噬菌体表面呈现一个独特的抗体可变区片断。含有这些噬菌体混合物的溶液,在流过附着特定抗原的固态基质后,粘在基质表面、洗不走的往往是呈现特异性抗体的噬菌体颗粒。特异性抗体的基因再进一步被扩增、纯化。这一流派的代表公司包括CAT和Dyax。
转基因小鼠技术出道虽晚,但技术优势却最为明显。该技术通过转基因的手段把小鼠自身的抗体表达系统破坏掉,再引进人的抗体生成系统。这种转基因小鼠针对某种抗原就可以直接产生全人源的抗体。
噬菌体展示和转基因小鼠在执行过程中各有千秋。一般来说,噬菌体展示技术“先快后慢”,即找到针对某种靶蛋白的抗体很快,但选出的这个抗体和靶蛋白的亲和性往往不高,需要人工细调,更换个别氨基酸。优化这一步费时费力,而且即使优化的抗体和通过转基因小鼠出来的抗体相比,亲和力可能还是相差一个数量级。另外,在优化的过程中需要替换一些氨基酸,也就引进了被免疫排斥的风险。转基因小鼠技术是“先慢后快”,将抗原注射到小鼠体内、产生特异抗体、制备杂交瘤细胞等前几步需要几个月的时间。但一旦最初的抗体产生,其优化过程在小鼠体内继续完成,又快又好,并且不用担心免疫排斥的问题。
多年后,有了足够的数据,转基因小鼠技术带来的产品优势才显示出来。在2017年的一篇论文中,作者对已经在市场上和至少进入二期临床试验的所有单抗药进行分析,发现与噬菌体展示相比,通过转基因小鼠研发出来的抗体药的成药性更好。成药性的指标包括12项分指标,比如抗体自我聚合、非特异性结合等等。
转基因小鼠派的主要代表公司为Genpharm/Medarex和Cell Genesys/Abgenix, 也就是本文的主角。我们要讲述的故事就从这里开始。
(读到这里,你完全可以在朋友面前吹牛了。当别人问你O药和K药的区别时,你可以略作沉思,然后诚恳地说,从两个药的名字可以看出至少一点区别来。K药的抗体名是Pembrolizumab, 是以zumab结尾的,所以K药是人源化单抗。而O药的抗体名是Nivolumab,是以umab结尾的,所以O药是全人源单抗。说完,你把目光继续投向无限的远方,你的余音还在屋里回荡。)
GenPharm成立于1988年。虽然公司的历史只有短短的9年,却在当代世界生物医药史上留下了浓墨重彩的一笔。单抗药在今天药物市场的主导地位离不开由GenPharm在这一技术领域的开拓性的贡献。
1988年11月,GenPharm通过公司合并、重组正式成立。它和基因泰克有一定的渊源——创始人Herman de Boer之前是基因泰克的高级科学家。 GenPharm的初期资金主要来自两个风投公司:Abingworth和Avalon Ventures。GenPharm是一家控股公司,包括两个独立实体:一个在荷兰,一个在美国南旧金山市。位于荷兰的子公司的主要技术是培育转基因奶牛,然后在其牛奶里提取重组蛋白;而美国的分公司的主要技术是培育转基因鼠,然后在鼠奶里提取重组蛋白。但我们可以想象,给牛挤奶和给小鼠挤奶的操作还是有巨大差别的。
90年代初,美国的GenPharm搬到硅谷的山景城,即今天谷歌总部所在的城市。
GenPharm的美国分公司的初始商业模式是开发转基因小鼠和大鼠,用作毒理学、免疫学、药物发现、和其他医学研究的模型。实验动物模型业务带来了GenPharm的早期现金收益。荷兰分公司后来改名GenePharming, 并在1991年8月产生了一个重大科研突破: 培育出世界上第一个转基因奶牛。
GenPharm在建立时并没有考虑用转基因动物生产单抗。
1989年,33岁的朗博加入GenPharm, 任职资深科学家。从此,他的科学生涯和公司的命运紧紧地捆绑在一起。在将近30年的公司变迁中,从GenPharm到Medarex,从Medarex再到百时美施贵宝(BMS),朗博是动荡中唯一不变的恒量。他的坚持保证了在公司换代中科学的连续性,也推动了转基因小鼠技术平台不断完善,最后结出累累硕果。
朗博在1985年从哈佛大学获得生化和分子生物学博士。 在Memorial Sloan-Kettering癌症中心做博士后的期间,他学会了转基因小鼠技术,也学会了给小鼠挤奶。在加入GenPharm之前他曾在波士顿地区的百健(Biogen)生物技术公司工作过。他性格开朗,目光睿智,思路敏捷。虽然带有几分书呆子气,但谈起科学来,他总是眉飞色舞, 条理分明。
朗博加入GenPharm的目的就是建立一个远比在鼠奶里提取重组蛋白更加重要、影响也更加深远的技术平台——HuMAb技术。
HuMAb和其他转基因小鼠单抗技术的最终目标都是把小鼠的抗体表达系统完全置换成人的系统。这样小鼠才能表达100%人源的抗体。要想产生这样的小鼠,需要做两部分的工作:一是把小鼠自身的抗体轻链和重链蛋白表达破坏掉或抑制住, 二是引入人的IgG(和IgM)全套表达系统。其中第二部分工作最为艰辛。人之所以能对任何一种抗原都能产生相应的抗体,是因为B细胞能产生几十亿种不同的抗体。产生这种抗体多样性主要有三个机理:不同V、(D)、J基因区的组合;VDJ区之间链接区的碱基任意加减;和编码可变区的DNA高频率突变。前两个机理是在B细胞生成过程中起作用,而第三个机理是B细胞遇到抗原后才发生的,是产生高亲和性抗体的主要分子进化机制。
要想在小鼠体内完全复制能产生具有如此多样性的人源抗体,最好能在小鼠胚胎干细胞里引进全套剧本:编码IgG轻链(l和k两种,我们这里以k链为主)的所有V,J和C区域的DNA(请参看图一和下图), 编码重链的所有V、D、J、C区的DNA。 这些DNA加起来有数百万对碱基(约3Mb或3百万碱基对),其中k轻链基因组在2号染色体上,重链在14号染色体上。靠普通的转基因手段(质粒转导)是不够用的。不同的转基因小鼠技术之间的差别在于用什么样的方法引进大规模的基因群,和在多大程度上能够复制人源抗体表达系统。在转进人源抗体基因后,抗体多样性的后两个机理——链接区的灵活性和可变区的DNA高频率突变——在小鼠中是否还保留,也需要实验证明。
我们如果把转基因小鼠生产人源抗体技术看作一个武林高手的内功的话,那么建立在该技术基础上研发针对某个靶点、某个疾病的单抗药产品则是具体的拳法或剑法。内功越高,具体招数越能发挥出越大的威力。而内功的高低则是人源抗体表达的多样性。多样性越高,产生高亲和性、高成药性的抗体的概率也会越大。在人体内,如果不考虑DNA高频突变一步,不考虑抗体种类(比如IgG或IgM), 抗体库可以具备1011种不同的抗体分子。我们对其取对数的话,就得到11这个数字。11层可以算作是内功的最高层。需要注意的是,相邻的两层在抗体的多样性上相差10倍。比如第5层的抗体多样性是第4层的10倍。
朗博和他的团队一方面与几所大学开展广泛合作,收购专利许可权,另一方面在公司的实验室里实践创新。1990年9月,他们已经成功地在小鼠里表达出拥有人源重链的抗体。1992年8月,他们成为世界上首家能够在小鼠里初步呈现人源IgG1和IgM抗体多样性的团队, 虽然这种多样性还不全面。 他们把DNA片段(携带的最大基因序列含6万多对碱基(61Kb))注射到小鼠受精卵的前核里,再把20-30个转基因后的受精卵放到一根由胶皮管和玻璃管串联起来的细导管里,用嘴把它们吹到一个母鼠的输卵管里。(朗博曾开玩笑说,他一生引以为豪的是,从没有把小鼠胚胎吸到嘴里过。)在生下来的一窝窝鼠崽中,多个含有人源抗体基因的小鼠株被建立。再通过杂交,最后的小鼠的基因组里有人源轻链的5个J区,重链的6个J区和至少8个D区。这样通过序列组合,小鼠取得了有限的多样性,体内的人源抗体库的规模已达到了第6层。
1993年6月,GenPharm科研团队又更上一层楼。他们改用酵母人工染色体(YAC)作为DNA载体,一次可将长达85kb的人源抗体重链基因片段通过脂质体转染的方式转进小鼠胚胎干细胞。这个基因片段包含一个V区,所有的D(约30个)和J区(6个),和一个C区。仅通过组合就可以表达180种(30x6)不同的抗体分子。虽然这种多样性跟天然抗体多样性相比还相差甚远,但也是一个可喜的进展。更重要的是他们掌握了一种能够转染大尺度DNA的方法。
被转染后的小鼠胚胎干细胞再被植入小鼠的早期胚胎中。长大后的小鼠是一种嵌合体——既有小鼠的细胞,又有能表达人源抗体的B细胞。这种小鼠成为HuMAb小鼠的前身。HuMAb中的Hu代表Human或人,而MAb则代表单抗。HuMAb就是人源单抗的意思。
但在确定HuMAb技术的可行性之前,GenPharm科研团队还需要证明关键一点:引进人源抗体基因的小鼠依然保存着抗体可变区的DNA高频突变的机制。前文中提到,这个体细胞突变机制(Somatic Mutation)是产生抗体多样性的第三个机理,是产生高亲和性抗体的主要分子进化机制。如果这个机制在转基因小鼠中没有保存,那就大大限制了整个技术平台的应用前景。和噬菌体展示技术相比,HuMAb的最大潜在优势就是,抗体优化是通过DNA高频突变在小鼠体内自然完成。可以说,没有DNA高频突变,就没有HuMAb技术平台。
还是在1993年的夏天,朗博和同事们第一次拿到了在抗原刺激后转基因小鼠的人源重链可变区DNA的测序结果。体细胞突变确实还在发生!团队成员欢呼雀跃。他们“嘭”地打开了一瓶香槟酒,共同庆祝这一历史时刻。事后朗博在空酒瓶子上写下了日期,并拿回家收藏起来。
GenPharm从技术变成产品有很长的路要走。在有产品销售之前,GenPharm的资金主要来自四方面:1)为其他制药和生物公司提供合同服务;2)申请政府基金;3)接受风投公司或战略合作伙伴的股权投资;4)销售转基因小鼠模型。
从公司成立到1994年2月,GenPharm陆陆续续进行了多轮融资,总融资额超过5千万美元。投资者包括著名的风投公司—Avalon, Fairfield, KPCB, Abingworth, Atlas, NEA等等,也包括一些制药企业——Genencor、礼来和Eisai 等。另外在此期间,GenPharm也获得了多笔政府研究基金,总额接近1.1千万美元。
成为上市公司是让早期投资者获取回报的途径之一,也是任何高新企业能够源源不断募资的主要策略。但在美国,股票市场对生物技术公司的热情是一阵阵儿的: 在一段时间里会对整个板块充满激情,而下段时间里却信心全无。泡沫的膨胀和戳破交替上演,股价起起伏伏,而生物公司的IPO的窗口也就时开时关。有时管理团队最重要的决定就是何时IPO,而一个公司的命运往往取决于它是否抓住了IPO的窗口。
1992年2月,GenPharm开始筹备IPO上市。但还没等他们准备好,风向突然变了。 两家生物技术公司——Centocor和XOMA的单抗药都在三期临床试验中失败,生物股集体大跌,尤其是单抗公司。IPO的窗口关闭。他们只好将IPO计划推迟。
两年后,1994年1月,GenPharm又卷土重来,再次准备IPO。他们正踌躇满志时,却冷不防从背后捅来一记夺命枪。2月1日,距离GenPharm不到21英里的竞争对手Cell Genesys在加州法庭投了一纸诉状,控告GenPharm窃取他们的商业机密。这桩案子使GenPharm的IPO计划再次搁浅,也差点毁掉整个公司。(未完待续)
本页刊发内容未经书面许可禁止转载及使用
公众号、报刊等转载请联系授权: Rebecca.du@lavfund.com
欢迎转发至朋友圈
近期文章
Portfolio公司新闻
Portfolio | Gritstone Oncology与bluebird bio合作开发肿瘤免疫细胞疗法,并筹划IPO (2018-08-24)
Portfolio | Alector完成1.33亿美元E轮融资,开发阿尔兹海默症的免疫疗法 (2018-08-20)
Portfolio | 基因编辑公司博雅辑因(EdiGene)宣布完成亿元PRE-B轮融资 (2018-08-13)
Portfolio | 英派药业成功完成3000万美元C轮融资 (2018-08-03)
Portfolio | "E药经理人"专题报道:康希诺生物 (2018-07-07)
Portfolio | "研发客"专题报道:英派药业 (2018-07-03)
Portfolio | 奕安济世顺利完成B+轮3500万美元融资 (2018-06-06)
Portfolio | Ansun生物制药成功完成A轮8500万美金融资 (2018-05-15)
Portfolio | 礼来16亿美元收购ARMO BioSciences (2018-05-11)
Portfolio | 迈博斯生物宣布完成4000万美元B轮融资,加速临床项目推进 (2018-05-09)
Portfolio | Avedro融资2500万美元,礼来亚洲基金领投 (2018-05-03)
Portfolio | BioCentury专题报道科望医药 (2018-04-27)
Portfolio | Tmunity在A轮融资中增筹3500万美元 (2018-04-19)
Portfolio | Terns Pharmaceuticals获得礼来三项NASH资产的全球独家开发和商业化权益 (2018-04-04)
Portfolio | 礼来亚洲基金参与Tempest Therapeutics 7000万美元的B轮融资 (2018-03-30)
Portfolio | 鹍远基因完成6000万美金的A+轮融资 (2018-03-28)
礼来亚洲基金的投资组合公司近期新闻回顾 (2018-03-23)
行业趋势
原创
疫苗引起自闭症? 一起影响深远的学术欺诈 (2018-07-28)
欢迎关注: