Brain 综述︱吴二喜团队评述胶质母细胞瘤治疗反应的评估和预测:挑战和机遇
图1.GBM的分子特征示意图。
目前GBM治疗的评估标准包括神经肿瘤学的治疗评估标准(Response Assessment in Neuro-Oncology,RANO)和Macdonald标准,它们很大程度依靠常规影像学技术手段(例如 MRI、CT、PET)。关于Macdonald标准,它结合了造影剂(可渗入脑实质内)产生对比增强肿瘤大小的成像技术与其他临床指标评估肿瘤疗效和患者病程进展,并将治疗结局分为完全缓解、部分缓解、稳定和进展(恶化)四类。然而,Macdonald标准的基础是对比增强病变区域,此标准有时不能鉴别影像上的对比增强区域 (疑似病灶)是治疗引起的非肿瘤性脑损伤反应(例如,假性进展、假性反应、放射性脑坏死)还是真正的肿瘤恶化(肿瘤继续生长或出现新的肿瘤)(图 2)。研究表明:多达一半的患者经一线治疗后会出现脑损伤,如假性进展、放射性坏死和水肿等。假性进展,通常发生在放化疗后3~6个月内,其机制尚不明了,但其特征性表现为“静止”肿瘤和非透明化坏死共生,并伴发促炎介质和细胞因子所诱导的血管通透性增加;放射性坏死多发生于治疗后数月至数年,其表现为肿瘤细胞的受损和透明化血管壁的增厚;水肿对比增强类似肿瘤恶化,但无需进一步治疗可稳定或消退。上述非肿瘤性治疗反应表明患者对治疗有积极反应。相反,真正的肿瘤恶化病灶则提示治疗失败。因此,基于特异性较低的传统影像学技术(如造影增强MRI等)的Macdonald 标准在GBM的临床诊断和疗效评估中将面临重大挑战。
(图源:Qi D, et al., Brain, 2022)
影像学技术
体液活检已成为发展微创诊断方法中的一种很有前景的介质。尤其人体血液,因其在循环、免疫反应、新陈代谢、细胞间信息交流以及人体各个组织脏器的细胞外基质形成过程中均发挥重要作用,且血液采集便利/微创,使得血液成为一种极具吸引力的开发疾病相关的生物标志物的体液。人脑的一个独特之处在于其特殊的保护结构即血脑屏障(blood brain barrier,BBB) 。BBB由紧密堆积的细胞组成,对通过屏障的物质具有高度选择性。然而,脑瘤患者的BBB由于紧密连接蛋白如claudin-1缺陷或突变等原因而使BBB破坏。因此,人体血液可以作为 “哨兵”,可有效反映大脑的生理和病理变化。多项研究结果已表明:肿瘤相关物质可通过GBM患者的BBB进入血液循环,进而转移至身体其它器官,如GBM被报道过罕见的颅外转移和肺转移 [10, 11]。另有研究通过微流体设备 - 循环肿瘤细胞芯片(CTC-iChip) 从33名GBM患者的血液样本中发现13名(13/33,约39.4%)可检测到STEAM+(SOX2、微管蛋白beta-3、EGFR、A2B5和c-MET)循环肿瘤细胞[12]。此外,血液还包含大量肿瘤相关的物质分子(例如代谢物、游离核酸[cell free nucleic acids,cfNAs], 肿瘤训化的血小板 (tumor-educated platelets,TEPs) 来源的mRNA和细胞外囊泡[extracellular vesicles,EVs] 等)。肿瘤患者 (包括GBM) 血液中某些类型的T 淋巴细胞、肿瘤细胞和原发性肿瘤块脱落的微泡 (microvesicles,MVs) 水平也有可能升高。这些研究都表明在循环系统中可检测到肿瘤细胞或肿瘤存在相关的细胞,囊泡及分子。
GBM是一种具有挑战性的疾病,其复发率和死亡率极高,且该病尚无灵敏可靠的诊断工具和有效的治疗方法。此外,高度的肿瘤异质性使得该肿瘤难以早期发现和早期治疗。深入了解GBM的异质性(例如克隆生长)及其微环境(例如免疫浸润,神经调节)将有助于开发更新、更有效的GBM治疗手段。同时,大力发展和挖掘灵敏可靠的用于诊断、预后以及疗效评估的方法技术,也将有助于延长GBM患者的生存期。虽然大量研究基于临床和组织学数据,使用机器学习分析缺乏特异性的成像数据,但有关可靠的体液性的生物标志物以及用于治疗评估和早期预测的技术研究仍有待于进一步探究。就GBM疗效评估而言,作者认为,患者病史、肿瘤分子特征(例如组织病理学数据)、患者纵向的定量成像指标和反映个体患者特征和肿瘤演变情况的体液性生物标志物,均已成为全面和准确的疗效评估体系的重要组份(图 3)。目前,通过AI高级分析策略特别是机器学习,可实现自动筛选数据,挖掘影像学和生物标志物相结合的特征,量化它们的交互和动态演变以及优化多种模式特征,这些特点将有助于早期预测胶质母细胞瘤治疗反应和肿瘤进程。然而,AI技术在GBM中的运用依然面临众多挑战,例如缺失数据的处理、跨医院和机构数据的标准化、研究算法的优化以及数据呈现的统一等。总之,机器学习建模的严格评估、前瞻性机器学习模式的临床试验验证以及机器学习模型的跨站点之间统一化等, 对于最终在临床实践中建立标准化操作流程和管理政策以及指导标准临床试验的临床决策至关重要。
群备注格式:姓名-单位-研究领域-学位/职称/称号/职位
【1】Glia︱周民研究团队揭示了星形胶质细胞合胞体的发生成熟和功能检测方法
【2】Neurology︱余红梅团队估计轻度认知障碍的双向转归并识别预测因子
【3】Mol Psychiatry︱杨春/曹君利/刘存明团队揭示外侧隔核向下丘脑外侧区GABA能神经元投射在疼痛和焦虑共病调控中的作用
【4】Theranostics︱王淑君/叶田田课题组发现冰片可驱动脑膜淋巴引流清除Aβ聚集体用于AD早期治疗
【5】Prog Neurobiol︱何凯雯课题组发现miR-34a在成年小鼠海马体中新功能:调控沉默突触与突触可塑性
【6】Neurobiol Dis︱哈工大梁夏/蒋庆华课题组揭示轻度认知障碍患者中基底前脑功能连接异常的转录易感性机制
【7】综述文献推荐专题第五期︱Cell期刊神经科学领域最新前沿综述精选(2022年12月-2023年1月)
【8】J Neuroinflammation︱周凯亮/倪文飞团队揭示线粒体靶向抗氧化肽治疗脊髓损伤的新机制
【9】Commun Biol︱李婴团队揭示前扣带回皮质星形胶质细胞肾上腺素能信号参与了大鼠疼痛相关厌恶记忆形成机制
【10】Redox Biol︱西农刘志刚等首次揭示蛋氨酸限制饮食可改善AD认知功能障碍
NeuroAI 读书会【1】NeuroAI 读书会启动︱探索神经科学与人工智能的前沿交叉领域
新刊启航,欢迎投稿 往期科研培训课程精选【1】高分SCI文章与标书作图(暨AI软件作图)研讨会(2023年1月14-15日,腾讯在线会议)(课程延期至2023年2月底)
【1】收藏+免费︱脑科学视频课程 & 9大手术造模和细胞分子科研手册资料
参考文献(上下滑动查看)
[1] Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro Oncol. 2020 Oct 30;22(12 Suppl 2):iv1-iv96. doi: 10.1093/neuonc/noaa200. Erratum in: Neuro Oncol. 2022 Jul 1;24(7):1214. PMID: 33123732; PMCID: PMC7596247.[2] Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol. 2022 Oct 5;24(Suppl 5):v1-v95. doi: 10.1093/neuonc/noac202. PMID: 36196752; PMCID: PMC9533228.[3] Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM, Chiocca EA, Cloughesy TF, DeGroot JF, Galanis E, Gilbert MR, Hegi ME, Horbinski C, Huang RY, Lassman AB, Le Rhun E, Lim M, Mehta MP, Mellinghoff IK, Minniti G, Nathanson D, Platten M, Preusser M, Roth P, Sanson M, Schiff D, Short SC, Taphoorn MJB, Tonn JC, Tsang J, Verhaak RGW, von Deimling A, Wick W, Zadeh G, Reardon DA, Aldape KD, van den Bent MJ. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020 Aug 17;22(8):1073-1113. doi: 10.1093/neuonc/noaa106. PMID: 32328653; PMCID: PMC7594557.[4] Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. doi: 10.1016/j.cell.2013.09.034. Erratum in: Cell. 2014 Apr 24;157(3):753. PMID: 24120142; PMCID: PMC3910500.[5] Laug D, Glasgow SM, Deneen B. A glial blueprint for gliomagenesis. Nat Rev Neurosci. 2018 Jul;19(7):393-403. doi: 10.1038/s41583-018-0014-3. PMID: 29777182; PMCID: PMC6536307.[6] Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106. PMID: 34185076; PMCID: PMC8328013.[7] Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010 Apr 10;28(11):1963-72. doi: 10.1200/JCO.2009.26.3541. Epub 2010 Mar 15. PMID: 20231676.[8] Ellingson BM, Wen PY, Cloughesy TF. Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials. Neurotherapeutics. 2017 Apr;14(2):307-320. doi: 10.1007/s13311-016-0507-6. PMID: 28108885; PMCID: PMC5398984.[9] Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol. 2015 Feb 23;6:33. doi: 10.3389/fneur.2015.00033. PMID: 25755649; PMCID: PMC4337341.[10] Schönsteiner SS, Bommer M, Haenle MM, Klaus B, Scheuerle A, Schmid M, Mayer-Steinacker R. Rare phenomenon: liver metastases from glioblastoma multiforme. J Clin Oncol. 2011 Aug 10;29(23):e668-71. doi: 10.1200/JCO.2011.35.9232. Epub 2011 Jun 13. PMID: 21670450.[11] Fonkem E, Lun M, Wong ET. Rare phenomenon of extracranial metastasis of glioblastoma. J Clin Oncol. 2011 Dec 1;29(34):4594-5. doi: 10.1200/JCO.2011.39.0187. Epub 2011 Oct 31. PMID: 22042941.[12] Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, Karis JP, Smith KA, Coons SW, Nakaji P, Spetzler RF, Feuerstein BG, Debbins J, Baxter LC. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol. 2012 Jul;14(7):919-30. doi: 10.1093/neuonc/nos112. Epub 2012 May 3. PMID: 22561797; PMCID: PMC3379799.[13] Müller Bark J, Kulasinghe A, Chua B, Day BW, Punyadeera C. Circulating biomarkers in patients with glioblastoma. Br J Cancer. 2020 Feb;122(3):295-305. doi: 10.1038/s41416-019-0603-6. Epub 2019 Oct 31. PMID: 31666668; PMCID: PMC7000822.[14] Raza IJ, Tingate CA, Gkolia P, Romero L, Tee JW, Hunn MK. Blood Biomarkers of Glioma in Response Assessment Including Pseudoprogression and Other Treatment Effects: A Systematic Review. Front Oncol. 2020 Aug 14;10:1191. doi: 10.3389/fonc.2020.01191. PMID: 32923382; PMCID: PMC7456864.[15] Sabedot TS, Malta TM, Snyder J, Nelson K, Wells M, deCarvalho AC, Mukherjee A, Chitale DA, Mosella MS, Sokolov A, Asmaro KP, Robin A, Rosenblum ML, Mikkelsen T, Rock J, Poisson LM, Lee I, Walbert T, Kalkanis S, Iavarone A, Castro AV, Noushmehr H. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol. 2021 Sep 1;23(9):1494-1508. doi: 10.1093/neuonc/noab023. PMID: 33560371; PMCID: PMC8408843.[16] Zachariah MA, Oliveira-Costa JP, Carter BS, Stott SL, Nahed BV. Blood-based biomarkers for the diagnosis and monitoring of gliomas. Neuro Oncol. 2018 Aug 2;20(9):1155-1161. doi: 10.1093/neuonc/noy074. PMID: 29746665; PMCID: PMC6071656.[17] Esteva, A., Robicquet, A., Ramsundar, B. et al. A guide to deep learning in healthcare. Nat Med 25, 24–29 (2019). https://doi.org/10.1038/s41591-018-0316-z[18] Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–1358.https://doi.org/10.1056/NEJMra1814259[19] Patel M, Zhan J, Natarajan K, Flintham R, Davies N, Sanghera P, Grist J, Duddalwar V, Peet A, Sawlani V. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma. Clin Radiol. 2021 Aug;76(8):628.e17-628.e27. doi: 10.1016/j.crad.2021.03.019. Epub 2021 May 1. PMID: 33941364.[20] Chan RW, Chen H, Myrehaug S, Atenafu EG, Stanisz GJ, Stewart J, Maralani PJ, Chan AKM, Daghighi S, Ruschin M, Das S, Perry J, Czarnota GJ, Sahgal A, Lau AZ. Quantitative CEST and MT at 1.5T for monitoring treatment response in glioblastoma: early and late tumor progression during chemoradiation. J Neurooncol. 2021 Jan;151(2):267-278. doi: 10.1007/s11060-020-03661-y. Epub 2020 Nov 16. PMID: 33196965.[21] Akbari H, Rathore S, Bakas S, Nasrallah MP, Shukla G, Mamourian E, Rozycki M, Bagley SJ, Rudie JD, Flanders AE, Dicker AP, Desai AS, O'Rourke DM, Brem S, Lustig R, Mohan S, Wolf RL, Bilello M, Martinez-Lage M, Davatzikos C. Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma. Cancer. 2020 Jun 1;126(11):2625-2636. doi: 10.1002/cncr.32790. Epub 2020 Mar 4. PMID: 32129893; PMCID: PMC7893811.[22] Kim JY, Yoon MJ, Park JE, Choi EJ, Lee J, Kim HS. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology. 2019 Nov;61(11):1261-1272. doi: 10.1007/s00234-019-02255-4. Epub 2019 Jul 9. PMID: 31289886.[23] Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo RE, Choi SH, Kim HS. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2019 Feb 19;21(3):404-414. doi: 10.1093/neuonc/noy133. PMID: 30107606; PMCID: PMC6380413.本文完