其他
|作者:廖玮(华东理工大学物理学院)本文选自《物理》2021年第10期■推荐理由物理学思维的特点是什么?是需要在面对困难的情况下找到合适的方法并获得答案,甚至在不知道答案为什么是正确的情况下得到正确的答案,然后再考虑如何完善打造出逻辑严密的理论体系。这是辉煌的智力成就,是高超的思维艺术。本文从思维艺术的视角阐述物理学的思辨之路,视角独特。常常可以看到有人把物理学当作是逻辑严密的精妙理论,可以由少数的原理解释广泛的现象,例如牛顿力学体系。许多人以牛顿作为科学的典范,甚至有人把牛顿力学那样系统化的理论才当作是科学。这种对科学的理解实际上是把教科书上总结好的科学理论当作为科学,甚至当作是科学的全部,实质上是只把已经完成的理论当作科学。拥有这种思想方法的人常常不知道科学理论中的概念从何而来、有什么根据,常常以为科学所需的概念没有什么困难,甚至以为相关概念在科学理论发展出来之前就已经出现。还有人认为哲学可以为科学发展作概念准备,甚至有人认为科学需要哲学为其发展作概念准备,好像哲学家在书斋中的思辨和想象可以凭空建立起科学发展所需的概念,可以胜过科学家在实验室里艰苦的实验工作以及对实验的思考。如果是那样,我们将不得不承认哲学是比科学更加有效的思维方式,谈论伽利略以来的科学革命也将毫无意义。以上这种对科学的理解,是一种对现实颠倒的思路。对现实的颠倒是对现实的抽象,是对现实的超越,是科学理论最终获得成功的一个极端重要的必要环节,但这同时也可能造成对现实的掩蔽。由这种思路的视角我们可以看到恢弘的景象,但是很难看到盛景所不得不依赖的地基或者根系。实际情况恰好相反,人们常常是在非常困难的情况下思考问题、发现原理,逐步建立起系统化的理论。这种困难不仅仅是缺乏系统化的理论的帮助,也可能是缺乏合适的概念思考问题,以前具有的概念甚至可能造成妨碍,还可能是没有合适的数学工具描述现象,更可能是没有足够的实验技术手段探测现象。对科学发展而言,更加重要的一点是如何在非常困难的情况下在未知领域思考问题、得到答案。在有这么多困难的情况下开展探索、找到合适的问题、获得问题的答案,这需要高超的思维艺术。物理学正是在未知领域探索的科学,物理学丰富的历史为这种思维艺术提供了丰富的范例。物理学家常常需要在缺乏合适概念的情况下思考问题,在不知道逻辑和数学如何发挥作用的情况下找到答案,并且发明适合描述未知世界的新概念和新语言。物理学思维的艺术就在于,我们需要在面对这类困难的情况下找到合适的方法获得答案,甚至在不知道答案为什么是正确的情况下得到正确的答案,然后再考虑如何完善打造出逻辑严密的理论体系。这是辉煌的智力成就,是高超的思维艺术。此外,正是在这种首先获得的少量可靠线索的指引之下,辨析概念和打造理论体系的努力才不会陷于概念的丛林之中而找不到正确的前进方向。这样才可能在还有许多问题没有被透彻理解的情况下就建立起可靠的理论体系,这也正是在物理学历史上多次发生的情况。费曼在1948年发展出量子电动力学的协变表述和重正化方法是一个非常好的例子,展示了物理学研究过程中的这种困难。费曼回忆1948年的Pocono会议时说[1]:按照贝特的建议,我在演讲中说:“这是我的数学公式,我将向你们展示它产生了量子电动力学的所有结果。”立刻有人问我:“这个公式是从哪里来的?”我说,“它来自哪里并不重要;它有效,这是正确的公式!”“你怎么知道这是正确的公式?”“因为它有效,所以它会给出正确的结果!”“你怎么知道它会给出正确的答案?”“这将从我如何使用它变得明显。我会向你们展示这个公式是如何工作的;在它的帮助下,我会解决一个又一个问题。”所以我试着解释我用过的符号的意义,我用它来解决电子的自能问题。当我说到细节的时候,他们就觉得无聊了。然后贝特试图帮助我,他说:“别担心那些细节,给我们解释一下这个公式是怎么用的。”并问:“是什么让你一开始就认为这个公式是正确的?”然后我试图进入物理概念。我在困难中越陷越深,一切都变得一团糟。我试着解释我所使用的技巧。举个例子,不相容原理,就是说你不能有两个处于同一状态的电子;结果是在微扰理论的中间态上你不太需要注意这个原理。我从经验规则中发现,如果你不注意它,你无论如何都会得到正确的答案,如果你注意了它,你就得担心这个和那个。然后他们问:“那不相容原理呢?”“对中间态没有任何影响”。然后泰勒问:“你怎么知道?”“我知道,因为我已经算出来了!”然后泰勒说:“这怎么可能?不考虑不相容原理是根本错误的。”我回答说:“我们以后会看到。”在开始的时候,我已经说过我将处理单电子,我将描述这个关于正电子是一个在时间上倒退的电子的想法,狄拉克问:“它是幺正的吗?”我说:“让我试着解释它是如何工作的,然后你可以告诉我它是否是幺正的!”我当时甚至不知道“幺正”是什么意思。所以我继续说下去,狄拉克重复了他的问题:“它是幺正的吗?”于是我最后说:“什么是幺正的?”狄拉克说:“矩阵将你从现在的位置带到未来的位置。”我说:“我还没有得到任何从现在到未来的矩阵。我在时间中向前或者向后,所以我不知道你的问题的答案是什么。”这些人每个人都有自己的想法,他们的表现就好像我应该知道他们在想什么。狄拉克已经在量子力学中证明了一点,即因为你只在时间上前进,你必须有一个幺正算符。但是没有处理单个电子的幺正方法。狄拉克不能考虑向前和向后,他想知道关于幺正性的定理是否适用于它。他们每个人,出于不同的原因,都认为我在做的事情中有太多的把戏,而事实证明,要告诉他们你真的可以以我的方式继续下去是不可能的。……我有一种可怕的逆来顺受的感觉。我对自己说,我必须把它全部写下来发表,这样他们就可以阅读和研究它,因为我知道它是正确的!就是这样。费曼的理论没有理清概念,反而带来了很多概念上的混乱,他有非常多的物理问题不能回答。虽然有这么多的困难,但是他非常确信自己是对的。这一方面是因为他对自己的计算有信心,他的结果与实验结果符合,另一方面是因为他可以与施温格的计算做比较,可以互相核对。然而,实际上施温格也遇到了类似的困难。当施温格在会议上试图解释他的理论的物理含义时,也立即遭遇到类似费曼的困境,所以贝特才建议费曼在报告中多讲数学而少讲物理的方面。简而言之,费曼和施温格都分别发展出了量子电动力学的协变表述和重正化方法,计算得到了兰姆移动和电子反常磁矩的结果,与实验符合。他们确信自己是正确的,但是他们都不知道自己为什么是对的。此后,在费曼、施温格和朝永振一郎的研究工作的激发下,相继有戴森对费曼、施温格和朝永振一郎的表述形式之间关系的阐明,戴森对可重正化的证明,威克(Wick)定理,Wald恒等式等多个研究工作。这些工作阐明了量子电动力学的内在结构,理清了很多概念,在一定程度上说明了费曼、施温格和朝永振一郎等人的工作为什么是对的。然而,即便如此,我们必须承认,量子电动力学的重正化理论过于离奇,时至今日我们仍然没有真正理解量子电动力学为什么是对的。实际上,我们并不需要讨论高深的量子电动力学就可以理解到科学研究中的这种困境,以及科学家克服这种困难达到正确结果的思维艺术。伽利略(图1)对匀加速运动的研究就是这样一个极好的范例。图1