查看原文
其他

Carbon Energy两周年|催化篇

Carbon Energy Carbon Energy 2022-09-16

Carbon Energy两周年

为了庆祝Carbon Energy创刊两周年,我们为各位读者汇总了催化合集,欢迎各位读者阅读!


☆ 电催化 ☆


1.Dai,Liming et al.

Ten years of carbon‐based metal‐free electrocatalysts.

Carbon Energy, 2019, 1(1), 19-31.

10.1002/cey2.5

戴黎明教授综述:十年碳基无金属电催化剂的新进展

 2.Wang,Xin et al.

Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation.

Carbon Energy. 2019, 1(1), 77-84.

10.1002/cey2.3

优化界面电子耦合相互作用开发高效水分解反应析氢电催化剂

3.Jang,Ho Won et al.

Reduced graphene oxide‐based materials for electrochemical energy conversion reactions.

Carbon Energy. 2019, 1(1), 85-108.

10.1002/cey2.13

韩国电池大牛Ho Won Jang教授的新综述:氧化石墨烯基能量转化与储存材料的过去、现在和未来

4.Won,Da Hye  et al.

Progress in development of electrocatalyst for CO2 conversion to selective CO production.

Carbon Energy. 2020, 2(1), 72-98.

10.1002/cey2.27

电化学催化还原CO2高选择性生成CO研究进展

5.Shen,Peikang  et al.

Nonprecious metal's graphene‐supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications.

Carbon Energy, 2020, 2(1), 99-121.

10.1002/cey2.26

石墨烯负载的非贵金属电催化剂在析氢反应(HER)中的研究进展

6.Soo Young Kim et al.

Graphene‐based catalysts for electrochemical carbon dioxide reduction

Carbon Energy. 2020, 2(2), 158-175.

10.1002/cey2.41

石墨烯复合材料电催化还原二氧化碳进展

7. Liu,Bin et al.

Design of hierarchical, three‐dimensional free‐standing single‐atom electrode for H2O2 production in acidic media.

Carbon Energy. 2020, 2(2), 276-282.

10.1002/cey2.33

酸介质中合成H2O2的新策略

8.Yang,Jun et al.

Surface composition dominates the electrocatalytic reduction of CO2 on ultrafine CuPd nanoalloys. 

Carbon Energy. 2020, 2(3), 443- 451.

10.1002/cey2.38

表面优化助力超细CuPd纳米颗粒电催化CO2还原

9.Yao,Xiangdong et al.

Controllable synthesis of Fe–N4 species for acidic oxygen reduction.

Carbon Energy. 2020, 2(3), 452-460.

10.1002/cey2.47

控制合成具有单一Fe-N4活性位点的氧还原催化剂

10.Sun,Xueliang et al.

Recent advances and strategies in the stabilization of single‐atom catalysts for electrochemical applications. 

Carbon Energy, 2020, 2(4), 488-520.

10.1002/cey2.46

孙学良教授课题组综述:稳定单原子催化剂的研究进展和策略

11.Sun,Shuhui  et al.

Biomass‐derived nonprecious metal catalysts for oxygen reduction reaction: The demand‐oriented engineering of active sites and structures.

 Carbon Energy, 2020, 2(4), 561-581.

10.1002/cey2.73

加拿大国立科学研究院孙书会教授团队|生物质材料在非贵金属氧还原电催化剂的应用

 12.Zhao,Chuan et al.

Design and operando/in situ characterization of precious‐metal‐free electrocatalysts for alkaline water splitting. 

Carbon Energy, 2020, 2(4), 582-613.

10.1002/cey2.79

新南威尔士大学赵川教授:非贵金属催化剂在电化学反应中的进展与调控策略

13.Liu,Lifeng et al.

Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes. 

Carbon Energy, 2020, 2(4), 646-655.

10.1002/cey2.56

出奇制胜,新型电解槽提升水分解制氢

14.Qiao,Jinli et al.

Carbon‐based metal‐free catalysts for electrochemical CO2 reduction: Activity, selectivity, and stability.

Carbon Energy, 2021, 3(1), 24-49.

10.1002/cey2.87

东华大学乔锦丽课题组|非金属碳基催化剂电催化还原CO2进展

15.Piao,Yuanzhe et al.

Metal‐organic frameworks‐derived novel nanostructured electrocatalysts for oxygen evolution reaction. 

Carbon Energy, 2021, 3(1), 66-100.

10.1002/cey2.80

韩国首尔大学Yuanzhe Piao教授|MOFs衍生物作为OER催化剂的发展和应用

16.Lu,Xiaofeng et al.

Electronic modulation and interface engineering of electrospun nanomaterials‐based electrocatalysts toward water splitting. 

Carbon Energy, 2021, 3(1), 101-128.

10.1002/cey2.85

吉林大学卢晓峰|催化剂电子调控和界面设计在分解水中的应用

17.Jeon,Tae‐Yeol Jeon et al.

Electrochemical determination of the degree of atomic surface roughness in Pt–Ni alloy nanocatalysts for oxygen reduction reaction. 

Carbon Energy, 2021, 3(2), 375-383.

10.1002/cey2.82

韩国浦项加速器实验室Tae‐Yeol Jeon团队:电化学测定铂镍合金纳米催化剂的原子表面粗糙度以用于氧化还原反应

18.Joseph B. Tracy et al.

Sulfidation and selenidation of nickel nanoparticles.

Carbon Energy, 2021, 3(4), 582-589.

10.1002/cey2.83

大道至简!关于镍纳米粒子的硫化/硒化,你知道多少?

19.Zhang,Qichun et al.

Carbon material-based anodes in the microbial fuel cells.

Carbon Energy, 2021, 3(3), 449-472.

10.1002/cey2.113

香港城市大学张其春|郑州大学李朝辉、宋荣斌Carbon Energy: MFC中基于碳材料的阳极发展

20.Sara Cavaliere et al.

Correlation between the surface characteristics of carbon supports and their electrochemical stability and performance in fuel cell cathodes.

Carbon Energy, 2021, 3(4), 654-665.

10.1002/cey2.109

碳载体表面特性及在燃料电池阴极中的电化学性能研究


光催化


1.Yu,Jiaguo et al.

Review on DFT calculation of s‐triazine‐based carbon nitride.

Carbon Energy, 2019, 1(1), 32-56.

10.1002/cey2.1

研究C3N4光催化机理的重器来啦!

2.Park,Jong Hyeok et al.

Black TiO2: What are exact functions of disorder layer.

Carbon Energy. 2020, 2(1), 44-53.

10.1002/cey2.32

韩国延世大学Jong Hyeok Park综述:揭秘黑色TiO2的表面无序层

3.Zhu,Yongfa  et al.

Photocatalytic activity enhanced via surface hybridization. 

Carbon Energy. 2020, 2(3), 308-349.

10.1002/cey2.66

碳能源文献精读写作大赛|有机与无机的完美结合:表面杂化增强光催化活性的魅力


☆光电催化 ☆


1.Liang,Ji et al.

Graphitic carbon nitride (g‐C3N4)‐based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting.

Carbon Energy. 2020, 2(2), 223-250.

10.1002/cey2.48

基于g-C3N4纳米异质结阵列的光电化学水裂解电极的最新进展


☆光热催化 ☆


1.Zhu,Yongfa et al.

Research progress on methane conversion coupling photocatalysis and thermocatalysis.

Carbon Energy, 2021, 3(4), 519-540.

10.1002/cey2.127

光和热协同催化甲烷转化



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存