查看原文
其他

Carbon Energy两周年|电池篇

Carbon Energy Carbon Energy 2022-09-16

为了庆祝Carbon Energy创刊两周年,我们为各位读者汇总了电池合集,欢迎各位读者阅读!


锂电池


01
1.Guo,Zaiping et al.


The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries

Carbon Energy, 2019, 1(1), 57-76.

10.1002/cey2.2

碳在集成硅/石墨负极用于高能量密度锂离子电池的关键作用



2.Ji,Xiulei et al.


ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries

Carbon Energy. 2019, 1(2), 165-172.

10.1002/cey2.10

硫化锌涂层助力高性能贫电解液锂硫电池



3.Ma,Renzhi et al.


Engineering of carbon and other protective coating layers for stabilizing 

silicon anode materials.

Carbon Energy. 2019, 1(2), 219-245.

10.1002/cey2.24

锂离子电池硅基负极材料的现状与展望



4.Guo,Juchen et al.


Low‐temperature synthesis of graphitic carbon‐coated silicon anode materials.

Carbon Energy. 2019, 1(2), 246-252.

10.1002/cey2.8

加州大学郭居晨教授团队提出Si-C负极材料产业化新技术



5.Gao,Shanmin et al.


Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review.

Carbon Energy. 2019, 1(2), 253-275.

10.1002/cey2.19

三聚氰胺海绵制备多孔碳用于超级电容器和锂离子电池的研究进展



6.Zheng,Shiyou et al.


“All‐In‐One” integrated ultrathin SnS2@3D multichannel carbon matrix power high‐areal–capacity lithium battery anode.

Carbon Energy. 2019, 1(2), 276-288.

10.1002/cey2.22

超薄二硫化锡复合三维多通道碳基体一体化电极助力锂离子电池



7.Chen,Zhongwei et al.


Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current  status and future outlook.

Carbon Energy. 2020, 2(1), 6-43.

10.1002/cey2.29

车用锂离子电池混合型正极材料回收的最新进展及未来展望



8.Liu,Gao et al.


The influence of compact and ordered carbon coating on solid‐state behaviors of silicon during electrochemical processes.  

Carbon Energy. 2020, 2(1), 143-150. 

10.1002/cey2.28

碳涂层助力硅电极的电化学稳定性



9.Zhang,Shanqing et al.


Honeycomb‐like carbon materials derived from coffee extract via a “salty” thermal treatment for high‐performance Li‐I2 batteries.

Carbon Energy. 2020, 2(2), 265-275

10.1002/cey2.40

喝完咖啡,锂电池更有劲儿!



10.Yang,Xiaohua et al.


First‐principle calculation of distorted T‐carbon as a promising anode for Li‐ion batteries with enhanced capacity, reversibility, and ion migration properties. 

Carbon Energy, 2020, 2(4), 614-623.

10.1002/cey2.54

第一性原理计算加速T-carbon在锂离子电池负极的应用



11.Cao,Dianxue et al.


Design and construction of a three‐dimensional electrode with biomass‐derived carbon current collector and water‐soluble binder for high‐sulfur‐loading lithium‐sulfur batteries. 

Carbon Energy, 2020, 2(4), 635-645. 

10.1002/cey2.49

多孔碳集流体和水系粘结剂助力高载量锂硫电池构建



12.Zhang,Jiujun et al.


Dendrite‐free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. 

Carbon Energy, 2021, 3(1), 153-166.

10.1002/cey2.94

上海大学张久俊/颜蔚Carbon Energy:制备具有优异导电性和循环稳定性的锂/钠金属电池



13.Chou,Shulei et al.


Manipulating metal–sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na–sulfur batteries. 

Carbon Energy, 2021, 3(2), 253-270

10.1002/cey2.101

乔芸&侴术雷Carbon Energy综述:构建金属-硫相互作用实现室温锂/钠硫电池高性能硫正极



14.Liu,Ruiping et al.


Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: Progress and perspective. 

Carbon Energy, 2021, 3(2), 271-302.

10.1002/cey2.96

刘瑞平|冯明|张蕾 Carbon Energy综述:碳基柔性自支撑锂硫电池正极研究进展与展望



15.Peng,Dongliang et al.


Multifunctional roles of carbon-based hosts for Limetal anodes: A review. Carbon Energy, 2021, 3(2), 303- 329

10.1002/cey2.95

厦门大学彭栋梁/谢清水/瞿佰华Carbon Energy综述:碳基集流体在锂金属负极中的应用



16.Wang,Feng et al.


Progress and perspective of interface design in garnet electrolyte-based all-solid-state batteries. 

Carbon Energy, 2021, 3(3), 385-409 

10.1002/cey2.100

王峰|Zhangxiang Hao|高忠辉Carbon Energy综述:石榴石型固态电解质基全固态电池界面设计的研究进展和展望



17.Young-Si Jun et al.


Thick free-standing electrode based on carbon– carbon nitride microspheres with large mesopores for high-energy-density lithium–sulfur batteries.

Carbon Energy, 2021, 3(3), 410- 423.

10.1002/cey2.116

韩国汉阳大学Young-Si Jun教授Carbon Energy: 大介孔碳氮微球电极实现高能量密度的锂硫电池



18.Shi,Zhicong et al.


The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation

Carbon Energy, 2021, 3(3), 482-508.

10.1002/cey2.108

广东工业大学施志聪教授Carbon Energy综述:无机纳米填料在聚合物复合固态电解质中对锂离子传递的关键作用



钾电池/钠电池


021.Lei,Yong et al.


Anode materials for potassium‐ion batteries: Current status and prospects. Carbon Energy. 2020, 2(3), 350-369. 

10.1002/cey2.57

设计钾离子电池负极材料-Carbon Energy邀您分享雷勇教授的经验和体会



2.Sun,Shigang et al.


Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries

Carbon Energy, 2021, 3(4), 541-553.

10.1002/cey2.111

钠/钾离子电池生物质衍生硬碳阳极材料电化学研究



3.Liang,Yeru et al.


Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries.

Carbon Energy, 2021, 3(4), 554-581.

10.1002/cey2.99

高倍率钾离子电池碳质负极材料的构建原理和最新研究进展



4.Sun,Xueliang et al.


The application of carbon materials in nonaqueous Na‐O2 batteries.

Carbon Energy. 2019, 1(2), 141-164.

10.1002/cey2.15

孙学良院士新综述:钠-空气电池体系的挑战与展望



5.Zhang,Jiujun et al.


Dendrite‐free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. 

Carbon Energy, 2021, 3(1), 153-166.

10.1002/cey2.94

上海大学张久俊/颜蔚Carbon Energy:制备具有优异导电性和循环稳定性的锂/钠金属电池



6.Chou,Shulei et al.


Manipulating metal–sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na–sulfur batteries. 

Carbon Energy, 2021, 3(2), 253-270

10.1002/cey2.101

乔芸&侴术雷Carbon Energy综述:构建金属-硫相互作用实现室温锂/钠硫电池高性能硫正极


7.Xia,Hui et al.


A novel one-step reaction sodium-sulfur battery with high areal sulfur loading on hierarchical porous carbon fiber.

Carbon Energy, 2021, 3(3), 440-448.

10.1002/cey2.86

南京理工大学夏晖教授&苏州大学晏成林教授:分级多孔碳纤维负载硫用于室温钠硫电池



8.Sun,Shigang et al.


Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries

Carbon Energy, 2021, 3(4), 541-553.

10.1002/cey2.111

钠/钾离子电池生物质衍生硬碳阳极材料电化学研究



9.Mai,Wenjie et al.


Understanding the improved performance of sulfurdoped interconnected carbon microspheres for Naion storage 

Carbon Energy, 2021, 3(4), 615-626.

10.1002/cey2.98

对于硫掺杂碳球的钠离子电池电化学性能提高的机理研究



锌电池/水系电池/太阳能电池


031.Zou,Ruqiang et al.


Metal‐organic framework‐derived Fe/Cu‐substituted Co nanoparticles embedded in CNTs‐grafted carbon polyhedron for Zn‐air batteries.

Carbon Energy. 2020, 2(2), 283-293

10.1002/cey2.35

金属有机骨架衍生的Fe/Cu/Co共掺杂碳纳米电催化剂及其锌-空气电池研究



2.Liang,Shuquan et al.


Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn‐ion batteries 

Carbon Energy. 2020, 2(2), 294-301

10.1002/cey2.39

打破砂锅问到底,探索层状钒系水合氧化物在水系锌电中的奥秘



3.Zhong,Cheng et al.


Carbon‐based cathode materials for rechargeable zinc‐air batteries: From current collectors to bifunctional integrated air electrodes. 

Carbon Energy. 2020, 2(3), 370-386.

10.1002/cey2.60

天津大学钟澄教授综述:锌空气电池中的碳基阴极材料—从集流体到双功能整体空气电极



4.Lu,Xihong et al.


Flexible Zn‐ion batteries based on manganese oxides: Progress and prospect. 

Carbon Energy. 2020, 2(3), 387-407.

10.1002/cey2.63

中山大学卢锡洪和刘晓庆团队|柔性锌离子电池锰基氧化物正极现状与展望



5.Ji,Xiulei et al.


Counter‐ion insertion of chloride in Mn3O4 as cathode for dual‐ion batteries: A new mechanism of electrosynthesis for reversible anion storage. 

Carbon Energy. 2020, 2(3), 437-442.

10.1002/cey2.68

抗衡离子嵌入:发现于氯离子电池电极中的一种全新电化学合成机理



6.Wang,Haiyan et al.


Issues and solutions toward zinc anode in aqueous zinc‐ion batteries: A mini review. 

Carbon Energy, 2020, 2(4), 540-560 

10.1002/cey2.69

王海燕&孙旦教授综述:水系锌离子电池中锌阳极面临的问题与解决策略



7.Rui,Xianhong et al.


Carbon‐based materials for all‐solid‐state zinc–air batteries. 

Carbon Energy, 2021, 3(1), 50-65

10.1002/cey2.88

广东工业大学芮先宏教授&中国科学技术大学余彦教授|碳基材料在固态锌空电池的发展和应用



8.Niu,Zhiqiang et al.


Flexible and tailorable quasi‐solid‐state rechargeable Ag/Zn microbatteries with high performance. 

Carbon Energy, 2021, 3(1), 167-175

10.1002/cey2.64

南开大学牛志强团队:柔性、可裁剪可充微结构银锌电池



9.Sun,Shuhui et al.


Graphitic‐shell encapsulated FeNi alloy/nitride nanocrystals on biomass‐derived N‐doped carbon as an efficient electrocatalyst for rechargeable Zn‐air battery. 

Carbon Energy, 2021, 3(1), 176-187

10.1002/cey2.52

Carbon Energy:穿上石墨烯铠甲,会呼吸的锌空气电池能量更加充沛



10.Ji,Xiulei et al.


The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. 

Carbon Energy, 2021, 3(2), 339- 348. 

10.1002/cey2.70

ZnCl2/LiCl water-in-salt电解液助力高效长寿命水溶液锌电池



11.David Reed et al.


Effects of water-based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. 

Carbon Energy, 2021, 3(3), 473-481.

10.1002/cey2.84

美国西北太平洋国家实验室(PNNLDavid Reed:粘结剂对电池性能的影响,你知道多少?



11.Xiao,Biwei  


Intercalated water in aqueous batteries.

Carbon Energy. 2020, 2(2), 251-264

10.1002/cey2.55

水系电池材料中水分子的作用探讨



12.Dong,Pei et al.


Carbon‐based perovskite solar cells: From single‐junction to modules.

Carbon Energy. 2019, 1(2), 109-123.

10.1002/cey2.11

碳基钙钛矿太阳能电池的新进展



13.Kim Jin Young et al.


Modeling and implementation of tandem polymer solar cells using wide‐bandgap front cells. 

Carbon Energy. 2020, 2(1), 131-142.

10.1002/cey2.20

叠层聚合物太阳能电池模拟与实证


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存