查看原文
其他

如何使用stata清洗问卷数据?

社科学术汇 社科学术汇 2022-06-09

在做问卷时,回收回来的问卷会有诸多错漏。因此问卷回收之后,首先要进行数据清洗,清洗完毕后才可进行分析。问卷清洗的工具有多种,如Excel、SPSS、stata等。本文将总结使用stata清洗问卷数据的几个常用的简单步骤,供大家学习参考。


01


剔除问卷回答时长过短的问卷





一份问卷的题目长度一般在10-25道题间,一般以多选题为主。一个用户完成这样一份问卷,至少需要一分钟。为了剔除那些不认真填答的用户,有必要在问卷发出时就设置答卷时长统计。假如答卷时长的字段名称为“time”,那么在回收问卷后,可以在stata中用以下命令剔除这些用户:drop if time<60。

02


删除内部员工数据





我们在发布问卷时,为了测试问卷是否能正常送达、是否能正常填答,通常会把几名内部人员的手机号/后台ID也放进问卷调研样本中。所以在回收问卷时,有几份问卷是内部人员填答的,是需要剔除的。假如此次给内部人员123、234、345都发放了问卷,可以在stata中用以下命令剔除这三个内部用户:drop if id=123 | id=234 | id=345。

03


对年龄和职业进行交叉剔除





许多调研为了统计用户的人口特征,都会在问卷最后附上人口学相关的单选题(如年龄、职业、收入)。然而,有部分用户填答问卷时不够认真,会盲选答案,为了保证问卷结果的可信度,可以考虑是否有必要把这些用户剔除掉。
下面我举一个例子来说明:

e2为年龄题:
e4为职业题:

按照常理,我们都知道人们一般在60岁后退休,50岁以下退休的人极为少见。当样本量足够的情况下,可以考虑把选择了50岁以下退休的用户数据剔除,即是把年龄选了50岁以下且e4的职业选了“12退休”的用户剔除,剔除命令如下:
drop if e2==1 & e4==12
drop if e2==2 & e4==12
drop if e2==3 & e4==12
drop if e2==4 & e4==12
drop if e2==5 & e4==12
drop if e2==6 & e4==12
drop if e2==6 & e4==11
drop if e2==7 & e4==11

04


根据排他项逻辑补充数据





排他项是多选题中常见的选项,如下题:


第9个选项是明显的排他项,当选择了9时,其他选项都会变为不可选择的状态。一些问卷系统在导出选择了排他项的数据时,无法自动补充其他选项的数据,导出后会显示如下:


由图可见,除了f9补充了数字1,其余选项都是空白,这种数据是无法统计的,必须把f1-f8的数据补充为0才可以统计。补充命令如下:replace f1=0 if f9==1。(以f1为例)

补充完毕后,数据会显示如下:



05

处理多选题的其他项



在多选题中出现其他项时,默认会让用户填写文本内容。当用户填写了其他项的文本内容时,数据导出后会直接显示文本内容。要知道,文本内容是无法直接统计的,统计工具只能统计数字。
如下图,g9是一个其他项。


当用户选择了g9,导出的问卷数据可能会显示如下:


g9的数据是无法统计的,因此需要根据g9来新建一个变量g9_other来计算。命令如下:
gen g9_other=.
replace g9_other=1 if g9!="0"&g9!=.
replace g9_other=0 if g9=="0"
label var g9_other "其它项(0/1)"
执行命令后,数据显示如下:


05

定义权重





在实际的问卷统计过程中,时常会用到加权的概念。所谓加权,就是当样本的构成跟总体的构成不一致时,可能会导致回收的问卷结果无法反应总体的特征,这时候就需要使用加权,让样本乘以一个加权系数,使得样本构成与总体构成一致(由于统计要求不同,对加权系数的计算也会不同,这里对加权系数就不展开论述了)。
例如,h题为性别题,选项1为男性,选项2为女性。男性的加权系数为1.6,女性的加权系数0.4,这时需要给数据新增一个加权变量,命令如下:
gen weight=.
replace weight=1.6 if h==1
replace weight=0.4 if h==2
执行命令完毕后就会看到原始数据多了一列名为“weight”变量的数据。

来源:简书

点击查看往期汇编

科研数据:

001 中国高速铁路线路&城市高铁开通数据
002 地级市面板数据1990-2019003 上市公司数据集-慈善、股权、研发、审计、高管004 地级市高新技术企业统计情况2000-2019005 碳交易、碳排放(分行业、国家、省、市、县)006 2008-2018中国上市公司政治关联原始数据007 1936-2018年全国县级以上干部数据008 地级市市长市委书记数据库009 上市公司2006-2018年资产负债收益010 各县接收上山下乡知青数量
011 832国家级贫困县摘帽数据

学习资料:

001 文献利器EndNote教程(视频-PPT)

002 SCI完整写作攻略

003 北大空间计量经济学讲义

004 博士研究计划范文

005 空间权重矩阵和杜宾模型案例数据及分析006 三阶段DEA模型理论与操作手册视频讲解007 SPSS统计分析与行业应用案例详解008 R语言学习资料009 20套学术答辩PPT模板010 实证分析大全011 Fama-French五因子模型数据和Stata代码012 Stata17 win和mac版013 Stata17MP版最新使用指南全书014 Stata面板数据处理015 Stata命令cf,数据清洗双录双校利器
016 Stata:面板格兰杰检验xtranger
017 读懂Stata空间计量及应用018 关于stata的面板数据处理019 常用的27个stata命令020 常用的stata命令集021 常用的经济计量学R&stata命令对比汇总

计量统计:7种主流数据分析软件及经典教材推荐Stata数据清洗方法回归结果不显著可采取方法与思路面板数据汇总实证模型三步走:数据、模型、结果检验调节变量、中介变量、控制变量七种经典回归方法六种定量方法解决内生性问题(stata代码)Stata双重差分操作流程及代码交互项与异质性分析面板交互固定效应模型详解5种安慰剂检验方法详解DIDM:多期多个体倍分法案例及代码
中介效应检验程序、操作应用政策评估反事实框架及匹配方法开展政策效应评估传统PSM-DID模型改进与应用广义DID超强的政策评估工具中介效应分析的四种方式、原则、方法和应用Stata17中DID、DDD方法及使用策略DID的平行趋势检验步骤和程序
文本相似度计算及政策量化分析政策效应评估的四种主流方法详解数据分析必须要掌握的统计学知识
科研论文:经管类CSSCI南大核心来源期刊投稿方式综合社科高校学报CSSCI南大核心来源期刊投稿方式因果推断——现代统计的思想飞跃2020年中国经济学研究热点分析空间计量经济学文献综述陆铭的13个实证研究锦囊碳达峰和碳中和管理研究:进展与综述国内几篇A刊的发表经验陈强:计量经济学实证论文写作全解析刘修岩:城市经济学模型与实证方法进展与趋势刘俏:”碳中和“给经济学提出那些新问题洪永淼:大数据革命和中国经济学研究范式博士如何接受完整、全面的科研训练顶级经济学期刊青睐何种计量方法管理世界投稿经验:如何回应审稿人意见基于195篇实证论文发现期刊编辑的喜好CSSCI期刊主编:论文写作用词八条建议论文参考文献怎么引用才能通过查重给博士生论文投稿实用建议常任轨教职经济学学术刊物目录
洪永淼等:中国经济科学的研究现状与发展趋.


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存