查看原文
其他

每周艾闻特别篇丨老龄HIV携带者的健康守护 - 路在何方?

Alison 青艾健康 2023-02-12

SUBSCRIBE to 青艾健康




Ageing with HIV丨老龄HIV携带者的健康守护——路在何方?

杂志:The Lancet HIV / The Lancet Healthy Longevity;公众号:柳叶刀The Lancet


导读

每个人都会老,HIV携带者也是。对于老龄HIV携带者的健康研究,来自哈佛医学院、耶鲁医学院等研究机构的科研人员从四个主要衰老特征——生物大分子损伤、细胞衰老、炎症、干细胞功能障碍切入,分析了衰老与HIV携带者的关系,并从生活方式、药物干预和心理状态几个大方面给出了适当的建议。


无论是否感染HIV,衰老是所有物种在生物学上的必经之路。尽管随着科技进步,抗逆转录病毒治疗(ART)使HIV携带者的寿命得到可观延长,但当其逐渐步入中老年仍承受着沉重的疾病负担。老年人通常比年轻人更有可能身患多种疾病,并且由于免疫功能的缺陷,与同龄非HIV携带者相比,老年HIV携带者的多病率也更高,也面临着独特的挑战。包括医疗保健专业人士在内的社会普遍认为,老年人新发感染HIV的风险较小。由于社会认为老年人性生活不频繁,也没有吸毒行为,因此在老年人获得保护性健康信息和早期HIV检测方面存在障碍。因此,近半数的老年艾滋病患者在病程后期才被诊断出来(定义为CD4细胞计数<350个/μL,或出现艾滋病标志事件)。


近日,“柳叶刀艾滋病与老龄健康峰会”(The Lancet Summit: HIV and Healthy Longevity)顺利举办。来自相关领域的专家学者和正在经历老龄化的HIV携带者齐聚一堂,相互交流探讨老龄HIV携带者面临的问题及其对生活质量的影响。[1]


那么,HIV携带者从青壮年逐渐步入中老年又需要了解和关注哪些方面以更好地守护自身健康呢?


密切关注衰老指征


生物衰老特征是研究者进行HIV携带者老龄健康研究的重要依据。来自哈佛医学院、耶鲁医学院等研究机构的科研人员从四个主要衰老特征——生物大分子损伤、细胞衰老、炎症、干细胞功能障碍切入(见图一),分析了衰老与HIV携带者的关系。[2]


生物大分子损伤

包括:DNA损失与基因组不稳定性/端粒磨损/蛋白质稳态的缺失/线粒体功能障碍

上下滑动浏览

DNA损失与基因组不稳定性

HIV携带者对于基因组稳定性的维持不断受到身体内部和外界不稳定因素的挑战。与HIV感染相关的机制可导致DNA损伤及基因组不稳定。研究者在潜伏感染细胞和暴露于核苷逆转录酶抑制剂的细胞中均发现了携带者身体内部对DNA损伤反应的缺陷。此外,携带者长期应对HIV相关的负面社会因素(误解、歧视、污名化等),心理状态与社会行为均受到影响。这些都成为HIV携带者的社会心理与行为应激源,通过糖皮质激素信号或交感神经系统信号过度刺激携带者,增加其氧化应激与炎症,进而促进其DNA损失和基因组不稳定。[3, 4]


端粒磨损

在人体的大多数组织和血细胞中,端粒长度的缩短一般与其年龄呈正相关。端粒磨损则与多种疾病相关。目前,已有研究发现接受抗逆转录病毒治疗的HIV携带者血细胞端粒长度比非携带者短,而较短的血细胞端粒长度会增加HIV携带者患心血管疾病的风险。HIV携带者肺上皮细胞的端粒长度也比非携带者短,这则可能增加其患肺部疾病的风险。不过,虽有证据表明HIV携带者的端粒长度过度缩短与端粒磨损和疾病进展相关,但其端粒长度的动态变化是否与非携带者的年龄相关性端粒缩短有所不同仍尚未明确。[5-11]


蛋白质稳态的缺失

在正常条件和应激条件下,蛋白质稳态(蛋白质合成和降解之间的平衡)由两种主要的蛋白质清除机制维持:泛素-蛋白酶体系统和细胞自噬介导的蛋白质分解。蛋白酶的稳定性可以延长人的寿命,且各种非传染性疾病都与蛋白质稳态受损有关。然而,随着年龄增长,人体蛋白酶的稳定性会下降。蛋白平衡改变和蛋白毒性与糖尿病、神经退行性疾病、心血管疾病和肌肉减少症的发生均有联系。


此外,伴侣介导的自噬因人体的衰老和脑病变而弱化,而人体调节自噬的功能丧失会影响衰老的其它特征,包括细胞衰老和干细胞功能。HIV感染和病毒蛋白会破坏各种类型细胞的自噬过程,包括巨噬细胞、T细胞、小胶质细胞和星形胶质细胞。并且,HIV相关性神经认知障碍在HIV携带者中越来越普遍。尽管携带者接受了治疗,但可能由于严重的大脑老化或过激的自噬而过早破坏神经元中必要的细胞机制,导致神经退化。[12-20]


线粒体功能障碍

人体衰老与线粒体功能的下降有关,其特征是线粒体DNA (mtDNA)突变和缺失的累积、线细胞生产能量减少和线粒体功能异常相关性衰老表型的出现。线粒体功能障碍通常会先影响能量需求高的组织,如大脑、骨骼肌和心脏等,这均会对健康寿命产生不利影响。相关能量途径的干扰可能会被炎症和活性氧物放大,并与年龄相关的非传染性疾病有关。


早期的核苷逆转录酶抑制剂是mtDNA聚合酶γ的抑制剂。其所引起的骨骼肌mtDNA突变的累积和氧化磷酸化的减少是HIV携带者衰老的最早证据。已有相关研究报道常见的核苷逆转录酶抑制剂可能使其它类型细胞的线粒体功能受到影响。例如,携带者常用的药物阿巴卡韦和替诺福韦能减少脂肪细胞的mtDNA数量,但只有替诺福韦能降低氧化磷酸化活性。此外,在未接受过抗逆转录病毒治疗的HIV携带者体内,许多病毒编码的蛋白质与线粒体促进的CD4淋巴细胞凋亡和线粒体合成受干扰有关。[21-26]


细胞衰老与炎症反应

上下滑动浏览

随着年龄的增长,衰老细胞不断累积在各个器官与系统中,并导致年龄相关性疾病的发生。在小鼠模型中,清除衰老细胞可延长其寿命。值得注意的是,衰老的多种特征均受到细胞衰老的影响,包括但不限于炎症反应、线粒体功能障碍、干细胞衰竭等。而炎症则因多种因素加剧,如人体内微生态失调(如肠道菌群失衡)和相关的微生物产物进入循环系统,以及各种其它增加年龄相关疾病风险的应激源。[27-36]


虽然没有普遍的衰老生物标志物,但是已有针对细胞生物标志物的临床综合评分规则可运用于评估HIV携带者的多病性(multimorbidity)。长期暴露于致病抗原(如HIV)会驱动更多的T细胞进入复制性衰老的状态,这个过程与细胞衰老相似,但又不同。尽管病毒血症得到控制,与非HIV携带者相比,许多HIV携带者仍持续发生慢性低水平炎症。接受有效抗逆转录病毒治疗的HIV携带者外周血中的炎症因子(如白细胞介素-6、肿瘤坏死因子、可溶性CD14、可溶性CD163、C反应蛋白和MCP-1)水平续升高,且明显高于非携带者。[37-46]


HIV携带者胸腺功能的丧失也比非携带者更为严重,而胸腺功能与虚弱等老年综合征有关。然而,与年龄相关的淋巴器官功能衰退、衰老免疫细胞的出现和扩散以及随之而来的HIV携带者多病性之间的机制联系仍不清楚。[47, 48]



干细胞耗竭/干细胞功能障碍

上下滑动浏览

干细胞是一类具有自我更新能力的细胞,能够产生至少一种类型的、高度分化的子代细胞,广泛存在于大多数组织中。干细胞的再生潜能通常与组织周转率有关,并且随着年龄的增长、谱系特异性的丧失、自我更新能力的丧失、细胞衰老的开始和损伤的累积,干细胞的再生潜能显著下降。例如,随着年龄的增长,血液中的干细胞功能向骨髓系倾斜,骨骼肌的修复能力及脑神经再生能力均下降[49]。已有研究报道,在大脑和肌肉中观察到限制干细胞功能的染色质修饰[50]。


对于HIV携带者而言,干细胞功能的丧失明显体现于干细胞再生潜力受到限制。造血祖细胞(CD34)和初始T细胞(未致敏T细胞)的损失所导致的结果可能与系统性免疫激活和炎症发生有关[51-55]。与炎症相关的不确定的潜在克隆性造血(clonal haematopoiesis of indeterminate potential),在HIV携带者中的发生率与流行率高于未携带HIV的对照组[56]。驱动骨形成的间质干细胞在HIV携带者体内表现出受到损伤的证据[57]。不过,这些损失或损伤是否类似于未受感染人群中与年龄有关的损失仍需进一步比较研究。


图一:生物衰老特征及衰老对HIV携带者的影响


HIV携带者如何应对衰老?


目前,HIV具体如何影响衰老过程仍存在许多认知空白与研究空白。较多研究仅报道了在HIV感染人群中发生的衰老现象或衰老为其带来的影响及结果,但其详细的作用机制仍无人知晓,有待进一步研究。尽管如此,这并不妨碍HIV携带者根据已知信息采取相关抗衰老、延缓衰老的应对措施。


生活方式的改变

携带者可以通过改变生活方式影响多种衰老机制,从而实现对健康寿命的延长。戒烟、体育活动、调整膳食结构、养成健康睡眠习惯、戒酒等均可延缓或改变衰老的轨迹。例如,戒烟可以显著逆转吸烟相关的DNA甲基化标记,并可能改变吸烟相关性并发症的发展和结局。体育运动可能有助于保持端粒长度,增强锻炼者的肌肉力量、心血管耐力等,并良好地调节衰老。[59, 60]


药物干预

药物干预也逐渐成为有效的抗衰老措施。目前,已有新兴开发的抗衰老药物可通过促进衰老细胞的凋亡加速衰老细胞的清除,或阻止衰老相关性分泌物的增殖,从而达到抗衰老目的。其中,有些抗衰老药物对HIV感染细胞的清除也有积极影响,可通过前几期艾闻介绍的“kick and kill”策略(点击回顾)[1] 逆转HIV病毒的潜伏期并将其消灭。但该类药物的使用可能会遗留慢性炎症,因此如何搭配用药有待进一步考究。市面上也有消炎药被证明能够减少炎症并降低HIV病毒载量。不过,由于其初始目的并非用于HIV感染的治疗,具体影响和作用仍有待在HIV感染人群中进行临床试验获得。[61-66] 必须注意的是,许多药物都会产生相互作用,且对不同健康状况的患者效果存在差异,切忌擅自用药换药,一定要在专业医生的建议和指导下采取科学合理的用药方案。


心理状态的调节

与此同时,HIV携带者的心理健康状态也不容忽视。在许多国家和地区,尤其是中低收入国家(low and middle income countries, LMICs),防治HIV的重点均放在对HIV病毒本身的治疗,而患者的心理状态则很少得到关注或完全无人问津。目前,冥想和正念疗法正作为减少心理压力、改善心理健康、减少炎症生物标志物的方案被研究者积极探索。迄今为止,有许多关于冥想和正念改善心理健康的研究,但只有少数研究提及被试的免疫参数发生改变。不过,二者仍可作为HIV携带者调节自身心理状态的方式。[67-69]


尽管与非携带者相比,老年HIV携带者的多病率更高,但只要密切关注衰老相关指征,积极寻求专业医生的指导与帮助,采取合理的抗衰老保健措施以守护自身健康,“健康老龄化”终归有机会实现。衰老也并非洪水猛兽!


图二:“老年保护剂”作用示意图


注:本栏目旨在介绍相关研究进展,不能作为治疗方案参考。如有需要,请至正规医院接受治疗指导。


青艾通知:

青艾健康静安检测点暂不开放,有需要检测的人员,可持48小时内的核酸检测阴性报告前往青艾诊所检测。

青艾诊所电话:021-65871069 /4006910694转【4】


编辑/Alison


参考内容

[1] 老龄HIV专辑 | 50岁及以上人群患病率和发病率增长迅速(微信公众号:柳叶刀The Lancet)

https://mp.weixin.qq.com/s/sA7qysy-4zFFceksheTssA

[2] Monty Montano, Krisann K Oursler, Ke Xu, Yan V Sun, Vincent C Marconi, Biological ageing with HIV infection: evaluating the geroscience hypothesis, The Lancet Healthy Longevity, 2022, 3(3): e194-e205.

[3] Piekna-Przybylska D, Sharma G, Maggirwar SB, Bambara RA. Deficiency in DNA damage response, a new characteristic of cells infected with latent HIV-1. Cell Cycle, 2017; 16: 968-78.

[4] Gidron Y, Russ K, Tissarchondou H, Warner J. The relation between psychological factors and DNA-damage: a critical review. Biol Psychol, 2006; 72: 291-304.

[5] Demanelis K, Jasmine F, Chen LS, et al. Determinants of telomere length across human tissues. Science, 2020; 369: eaaz6876.

[6] Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med, 2018; 56: 1210-22.

[7] Effros RB, Allsopp R, Chiu CP, et al. Shortened telomeres in the expanded CD28-CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS, 1996; 10: F17-22.

[8] Zanet DL, Thorne A, Singer J, et al. Association between short leukocyte telomere length and HIV infection in a cohort study: no evidence of a relationship with antiretroviral therapy. Clin Infect Dis, 2014; 58: 1322-32.

[9] Cobos Jiménez V, Wit FW, Joerink M, et al. T-cell activation independently associates with immune senescence in HIV-infected recipients of long-term antiretroviral treatment. J Infect Dis,  2016; 214: 216-25.

[10] Engel T, Raffenberg M, Schoepf IC, et al. Telomere length, traditional risk factors, factors related to human immunodeficiency virus (HIV) and coronary artery disease events in Swiss persons living with HIV. Clin Infect Dis, 2020; 73: e2070-76.

[11] Xu S, Vucic EA, Shaipanich T, et al. Decreased telomere length in the small airway epithelium suggests accelerated aging in the lungs of persons living with human immunodeficiency virus (HIV). Respir Res, 2018; 19: 117.

[12] Bourdenx M, Gavathiotis E, Cuervo AM. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy, 2021; 17: 2040-42.

[13] Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol,  2014; 29: 97-104.

[14] Zhang H, Puleston DJ, Simon AK. Autophagy and immune senescence. Trends Mol Med,  2016; 22: 671-86.

[15] Dong S, Wang Q, Kao YR, et al. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature, 2021; 591: 117-23.

[16] Dinkins C, Pilli M, Kehrl JH. Roles of autophagy in HIV infection. Immunol Cell Biol, 2015; 93: 11-17.

[17] Leymarie O, Lepont L, Berlioz-Torrent C. Canonical and noncanonical autophagy in HIV-1 replication cycle. Viruses, 2017; 9: 270.

[18] Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM. Role of autophagy in HIV infection and pathogenesis. J Intern Med, 2017; 281: 422-32.

[19] Cole JH, Underwood J, Caan MW, et al. Increased brain-predicted aging in treated HIV disease. Neurology, 2017; 88: 1349-57.

[20] Fields J, Dumaop W, Eleuteri S, et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci, 2015; 35: 1921-38.

[21] Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab, 2016; 23: 303-14.

[22] Zampino M, Brennan NA, Kuo PL, et al. Poor mitochondrial health and systemic inflammation? Test of a classic hypothesis in the Baltimore Longitudinal Study of Aging. Geroscience, 2020; 42: 1175-82.

[23] Payne BA, Wilson IJ, Hateley CA, et al. Mitochondrial aging is accelerated by anti-retroviral therapy through the clonal expansion of mtDNA mutations. Nat Genet, 2011; 43: 806-10.

[24] Hunt M, Payne BAI. Mitochondria and ageing with HIV. Curr Opin HIV AIDS, 2020; 15: 101-09.

[25] McComsey GA, Daar ES, O’Riordan M, et al. Changes in fat mitochondrial DNA and function in subjects randomized to abacavir-lamivudine or tenofovir DF-emtricitabine with atazanavirritonavir or efavirenz: AIDS Clinical Trials Group study A5224s, substudy of A5202. J Infect Dis, 2013; 207: 604-11.

[26] Schank M, Zhao J, Moorman JP, Yao ZQ. The Impact of HIV- and ART-induced mitochondrial dysfunction in cellular senescence and aging. Cells, 2021; 10: 174.

[27] Burd CE, Sorrentino JA, Clark KS, et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell, 2013; 152: 340-51.

[28] Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 2009; 8: 311-23.

[29] Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011; 479: 232-36.

[30] Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4apositive cells shorten healthy lifespan. Nature, 2016; 530: 184-89.

[31] Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing senescent cell burden in aging and disease. Trends Mol Med, 2020; 26: 630-38.

[32] Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol, 2018; 15: 505–22.

[33] Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008;

6: 2853-68.

[34] Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol, 2017; 79: 517-39.

[35] Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci, 2014; 69 (suppl 1): S4-9.

[36] Zicari S, Sessa L, Cotugno N, et al. Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses, 2019; 11: 200.

[37] Cohen J, Torres C. HIV-associated cellular senescence: a contributor to accelerated aging. Ageing Res Rev, 2017; 36: 117-24.

[38] Duffau P, Ozanne A, Bonnet F, et al. Multimorbidity, age-related comorbidities and mortality: association of activation, senescence and inflammation markers in HIV adults. AIDS, 2018; 32: 1651-60.

[39] Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev, 2016; 158: 46-52.

[40] Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol, 2012; 24: 501-06.

[41] Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity, 2013; 39: 633-45.

[42] Gandhi RT, McMahon DK, Bosch RJ, et al. Levels of HIV-1 persistence on antiretroviral therapy are not associated with markers of inflammation or activation. PLoS Pathog, 2017; 13: e1006285.

[43] Margolick JB, Bream JH, Martínez-Maza O, et al. Frailty and circulating markers of inflammation in HIV+ and HIV− men in the Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr, 2017; 74: 407-17.

[44] Erlandson KM, Piggott DA. Frailty and HIV: moving from characterization to intervention. Curr HIV/AIDS Rep, 2021; 18: 157-75.

[45] Premeaux TA, Javandel S, Hosaka KRJ, et al. Associations between plasma immunomodulatory and inflammatory mediators with VACS Index scores among older HIV-infected adults on antiretroviral therapy. Front Immunol, 2020; 11: 1321.

[46]Tenorio AR, Zheng Y, Bosch RJ, et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis, 2014; 210: 1248-59.

[47] Douek DC, McFarland RD, Keiser PH, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature, 1998; 396: 690-95.

[48] Guaraldi G, Franconi I, Milic J, et al. Thymus imaging detection and size is inversely associated with metabolic syndrome and frailty in people with HIV. Open Forum Infect Dis, 2019; 6: ofz435.

[49] Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol, 2007; 8: 703-13.

[50] Brunet A, Rando TA. Interaction between epigenetic and metabolism in aging stem cells. Curr Opin Cell Biol, 2017; 45: 1-7.

[51] Appay V, Fastenackels S, Katlama C, et al. Old age and anticytomegalovirus immunity are associated with altered T-cell reconstitution in HIV-1-infected patients. AIDS, 2011; 25: 1813-22.

[52] Fastenackels S, Sauce D, Vigouroux C, et al. HIV-mediated immune aging in young adults infected perinatally or during childhood. AIDS, 2019; 33: 1705-10.

[53] Roederer M, Dubs JG, Anderson MT, Raju PA, Herzenberg LA. CD8 naive T cell counts decrease progressively in HIV-infected adults. J Clin Invest, 1995; 95: 2061-66.

[54] Sauce D, Larsen M, Fastenackels S, et al. HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis. Blood, 2011; 117: 5142-51.

[55] Tsukamoto T. Hematopoietic stem/progenitor cells and the pathogenesis of HIV/AIDS. Front Cell Infect Microbiol, 2020; 10: 60.

[56] Bick AG, Popadin K, Thorball CW, et al. Increased CHIP prevalence amongst people living with HIV. medRxiv 2020; published online Nov 7. https://doi.org/10.1101/2020.11.06.20225607 (preprint).

[57] Delpino MV, Quarleri J. Influence of HIV infection and antiretroviral therapy on bone homeostasis. Front Endocrinol 2020; 11: 502.

[58] Fumaz CR, Ayestaran A, Perez-Alvarez N, et al. Resilience, ageing, and quality of life in long-term diagnosed HIV-infected patients. AIDS Care, 2015; 27: 1396-403.

[59] Dugué PA, Jung CH, Joo JE, et al. Smoking and blood DNA methylation: an epigenome-wide association study and assessment of reversibility. Epigenetics, 2020; 15: 358-68.

[60] Semeraro MD, Smith C, Kaiser M, et al. Physical activity, a modulator of aging through effects on telomere biology. Aging, 2020; 12: 13803-23.

[61] Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine, 2019; 40: 554-63.

[62] Cummins NW, Sainski AM, Dai H, et al. Prime, shock, and kill: priming CD4 T cells from HIV patients with a BCL-2 antagonist before HIV reactivation reduces HIV reservoir size. J Virol 2016; 90: 4032-48.

[63] Cummins NW, Sainski-Nguyen AM, Natesampillai S, Aboulnasr F, Kaufmann S, Badley AD. Maintenance of the HIV reservoir is antagonized by selective BCL2 inhibition. J Virol, 2017; 91: e00012-17.

[64] Rosás-Umbert M, Ruiz-Riol M, Fernández MA, et al. In vivo effects of romidepsin on T-cell activation, apoptosis and function in the BCN02 HIV-1 kick&kill clinical trial. Front Immunol,  2020; 11: 418.

[65] Gunst JD, Kjær K, Olesen R, et al. Fimepinostat, a novel dual inhibitor of HDAC and PI3K, effectively reverses HIV-1 latency ex vivo without T cell activation. J Virus Erad, 2019; 5: 133-37.

[66] Høgh Kølbæk Kjær AS, Brinkmann CR, Dinarello CA, et al. The histone deacetylase inhibitor panobinostat lowers biomarkers of cardiovascular risk and inflammation in HIV patients. AIDS, 2015; 29: 1195–200.

[67] Creswell JD, Myers HF, Cole SW, Irwin MR. Mindfulness meditation training effects on CD4+ T lymphocytes in HIV-1 infected adults: a small randomized controlled trial. Brain Behav Immun, 2009; 23: 184–88.

[68] Scott-Sheldon LAJ, Balletto BL, Donahue ML, et al. Mindfulnessbased interventions for adults living with HIV/AIDS: a systematic review and meta-analysis. AIDS Behav, 2019; 23: 60–75.

[69] Titanji BK, Tejani M, Farber EW, et al. Cognitively-based compassion training for HIV immune non-responders—an attention-placebo randomized controlled trial. J Acquir Immune Defic Syndr, 2021; published online Dec 7. https://doi.org/10.1097/ QAI.0000000000002874.


··· 延伸阅读 ···



- END -





上海青艾健康促进中心

- Shanghai Health Center -


服务咨询热线

— 4006910694 —

专业·友善·隐私·安全


转0|艾滋病阻断

暴露前/后预防(PrEP/PEP)

周一至周日:9:00-23:00


转1|艾滋病咨询

暴露风险评估

周一至周五:10:00-18:00


转2|携带者咨询

陪同关怀、用药/政策咨询、逢生援助

周一至周五:10:00-18:00


转3|友善心理咨询

恐艾、性与性别认同

周一至周五:10:00-18:00,心理志愿者服务

周一至周五:19:00-21:00,友善心理支持热线


转4|青艾诊所

性病检测、诊疗,HIV相关检测

周一至周日:9:30-17:30



扫码免费领取HIV自检健康包


查看更多官方账号


地址:静安区延平路340弄3号楼4F

电话:021-37723071

合作:qingai@shqingai.com


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存