查看原文
其他

在魔法角度下石墨烯超晶格中的半充满关联绝缘体行为了解一下 | 科技袁人

袁岚峰 风云之声 2018-07-19

袁老师本期给大家介绍了一个比较冷门的概念,看标题就晕了吗?那没事,看内容可能晕得更严重……

      

不过科学的奇妙之处,就在于一旦你对一个问题真正感兴趣,尤其是钻研进去,那么它的每一次突破和进步,都会使得你收获巨大的喜悦和鼓舞。袁老师对于曹原这次因为石墨烯论文广受关注,还是觉得欣慰的,但我们更希望中国人关心的,不是什么“神操作”震惊体的宣传,而是对一项可以造福人类的伟大事业有所突破而感到兴奋。所以,虽然这一期可能很难懂,但是同学们不妨当做一次尝试,毕竟科学真正的魅力,就在于他那晦涩艰深的神秘之中。


https://v.qq.com/txp/iframe/player.html?vid=e0628w2vakj&width=500&height=375&auto=0


视频链接

哔哩哔哩:https://www.bilibili.com/video/av21999856


腾讯视频:https://v.qq.com/x/page/e0628w2vakj.html


今日头条:http://www.365yg.com/item/6543548263734182414/


秒拍:

https://gslb.miaopai.com/stream/vvZwG~M1U7puOThhpsl5MUQ1n1cAw5j4B4n1hQ__.mp4


部分评论

伐姬滑稽:

弱小和无知不是生存的障碍,傲慢才是Σ(  ̄□ ̄||)

致敬先辈:

虽然不太懂,还是为我们中国的科学家点个赞!

BisAnubis:

在视频里袁老师说了几句媒体过分夸大,就又勾出来几个假道义联盟的,什么叫中国媒体是最没公德的?你统计过?挨个调查过?全球摸底过?几个uc能代表全部?你能不过脑子顺口说出这种不负责的话就已经代表缺乏家教和素质,根本不懂客观是什么,只有你美国爹媒体公德?水平低于正常人脑子容量太小就少说话多看书,少在这动不动就装智者总结什么中国外国如何,说小了你这是顺嘴胡说,说大了就是煽动谣言破坏社会稳定,uc震惊党谁搞的?写那些的不是所谓的老百姓?还是说震惊党个个都是公职人员?你见过几个国内正常媒体标题党了?想赖到中国头上?标题党我们独有?看到这种随口胡扯的玩意真是恶心。

宄玖:
老师最后说的好好,对科学的宣传要高调,对个人的宣传要低调。年轻还有很大的发展空间,期待未来

原文:石墨烯超导和21岁博士生:对科学的宣传要高调,对个人的宣传要低调 | 袁岚峰


最近,我的科大师弟曹原火了。媒体疯传他作为21岁的博士研究生,做出了一个非常重要的研究,在世界顶级科学期刊Nature的同一期上连续发表了两篇论文。来感受一下,许多自媒体的报道是这种画风:《刚刚,这个中国人一记神操作,竟解决了困扰全球百年的难题,全球震惊!而他究竟有多年轻,你可能想都想不到?!


许多人来问我这究竟是怎么回事,其中包括我非常尊敬的前辈朋友、中国科学院院士、著名的地质学家李曙光教授。刚好,曹原师弟的这个研究跟我的专业比较接近,我大致可以向公众解释一下,解答李曙光老师和诸位朋友们的疑问。


这两篇Nature的论文发表于2018年3月5日。第一篇的标题是“Correlated insulator behaviour athalf-filling in magic-angle graphene superlattices”(https://www.nature.com/articles/nature26154),中文意思是《在魔法角度下石墨烯超晶格中的半充满关联绝缘体行为》。第二篇的标题是“Unconventional superconductivity in magic-angle graphenesuperlattices”(https://www.nature.com/articles/nature26160),中文意思是《在魔法角度下石墨烯超晶格中的非传统超导性》。


为什么一个研究写成两篇文章呢?因为这是紧密相连的两个结果,在科学上大家更关心第二个结果,但第二个结果是以第一个结果为基础的,所以很自然地分成两篇文章。


现在我们来解读一下,这两篇文章说了些什么。


· 什么是石墨烯?什么是超导?


你可能听说过,世界上有一样东西叫做“石墨烯”。学过初中化学的人,应该都知道石墨的结构,它是一种碳的单质,由一层层的平面层叠而成。石墨烯,就是单层的石墨。


石墨烯


听起来很容易理解,是吧?但是在很长的时间里,人们并没有制备出石墨烯。直到2004年,才有两位科学家Andre Geim和Konstantin Sergeevich Novoselov用一种神奇的办法制备出了石墨烯。什么办法呢?用胶带撕!


(此处应有哄笑)


姚明发来贺电


就这样,这两个异想天开的家伙获得了2010年的诺贝尔物理学奖。


人们已经发现,石墨烯有许多优秀的性质,例如强度比钢铁还高,导电性比铜还好。不过这次曹原等人的新成果,更加令人脑洞大开:石墨烯可以超导!


超导是什么?超导就是电阻为零。一般的物体都有电阻,电流会导致发热,这就会损失能量。但在超导体中,电能不会转化成热能,所以电流可以无限地持续下去。想想看,如果导线都不损失能量了,世界会发生多大的改变!


目前,所有已知的物质在室温下都是不超导的。只是有些物质,在温度降到一定程度的时候,电阻会从有限值突然降成零,变成超导体。这是一个突变,不是渐变,这个突变的温度叫做超导转变温度,是超导研究中大家最关心的一个量。


一个有趣的事实是,人们还无法预测哪些物质会超导。实际上,许多导电性很好的物质是不会变成超导体的,例如铜和银,在室温下电阻就很低,但你无论把它的温度降到多低,也从来没有看到它的电阻变成零。反而是一些在室温下导电性不太好的物质,例如水银,也就是汞,在低温下可以变成超导体。目前,在常压下最高的超导转变温度是零下135摄氏度,对应的物质是某种铜氧化物。


这里有一个小小的知识点,对我们下面的叙述很有用。比起摄氏温标来,科学界更喜欢用绝对温标,或者叫做热力学温标。它的定义是,把零下273.15摄氏度定义为绝对零度,在此之上每一度的间隔都跟摄氏度相同。绝对温标的单位叫做开尔文(Kelvin),简写为K,所以零下135摄氏度就约等于138 K。为什么绝对温标比摄氏温标好用呢?因为大自然不会出现绝对零度以下的温度。


我们再次强调一下,室温超导还从来没有实现过。科学界经常把铜氧化物的超导称为高温超导,但千万不要被这个名字欺骗了,这个所谓“高温”的意思仅仅是超过液氮的温度而已,也就是超过77 K,离室温(约300 K)还远着呢!请大家一定记住,在超导这个领域,室温比高温要高,——你不妨把这当作一种魔幻现实主义的语言。


魔幻现实主义的名著《百年孤独》


名称是小问题,无论你怎么称呼,都不会改变现实世界的运行规律。真正令人头疼的是,铜氧化物的超导原理,到现在还是如坠云雾之中。


传统上,人们对于一些简单物质例如水银的超导,已经提出了一种成功的解释,叫做BCS理论。BCS这个名字是它的三位提出者John Bardeen、Leon N Cooper和John Robert Schrieffer的姓氏首字母缩写,他们三人因此获得了1972年的诺贝尔物理学奖。但是,在BCS理论的框架内,超导转变温度很难超过40 K。


巴丁(John Bardeen)

库珀(Leon N Cooper)

施里弗(John RobertSchrieffer)


1986年,两位科学家Johannes Georg Bednorz和Karl Alexander Müller发现了一类新的超导体系,就是铜氧化物。由于具备高温超导特性,这个领域迅速成为最火热的物理学研究热点,他们也因此获得了1987年的诺贝尔物理学奖。


贝德纳兹(Johannes GeorgBednorz)

穆勒(Karl Alexander Müller)


全世界的实验物理学家们,开始以疯狂的热情,夜以继日地尝试铜氧化物的各种元素组成和比例,就像做排列组合似的,这种做法也常被比喻为炒菜。经过这种地毯式的搜索,果然找到了一些超导转变温度很高的体系,典型的例子如钇钡铜氧(Y-Ba-Cu-O)和铋锶钙铜氧(Bi-Sr-Ca-Cu-O)。在这个过程中,中国厨师,哦,科学家们,也做出了很大贡献,例如朱经武、赵忠贤等人,这是值得我们喝彩的。


炒菜(动图)


但是在理论方面呢,铜氧化物超导的机理却完全搞不清楚。唯一可以肯定的是,不是BCS理论。想想看,全世界最聪明的理论物理学家们经过30年的艰苦努力,却仍然是众说纷纭,莫衷一是,没有人能解决问题,这是一个多么神奇的领域啊!


· 高温超导的新线索


好,现在我们可以说回曹原等人的工作了。他们究竟做了些什么?石墨烯超导又意味着什么?


以前对石墨烯的研究,针对的都是单层的石墨烯。不过最近有理论家预言,如果你取两层石墨烯,并且让它们之间偏转1.1度左右,就有可能出现一些新的性质,虽然还不确定是什么性质。


曹原等人做的,就是这样的实验。他们发现,在这个偏转角下,双层石墨烯的体系表现出了惊人的性质,所以他们把这个角度称为魔法角度,magic angle。什么惊人的性质呢?


无偏转(左)和偏转1.1度(右)的双层石墨烯


第一个惊人的性质,是这个体系成了莫特绝缘体。


什么叫做莫特绝缘体?莫特(Nevill Francis Mott)是1977年的诺贝尔物理学奖获得者,而莫特绝缘体指的是这样一种体系:根据最基础的导电性理论,它应该是导体,但由于某种超越基础理论的高级因素,它实际上却是绝缘体。这种超越基础理论的高级因素,就叫做“关联”(correlation),指的是电子之间的瞬间相互作用。


莫特(Nevill Francis Mott)


更具体地说,在莫特绝缘体中,平均每个原子有一个价电子。但这些电子之间的排斥作用很强,如果让两个电子同时出现在一个原子上,就会付出很大的代价。结果是电子们只好“一个萝卜一个坑”地待在相应的原子上,谁也不能动,卡位卡得很成功,所以整个体系成了绝缘体。


回顾一下第一篇论文的标题,《在魔法角度下石墨烯超晶格中的半充满关联绝缘体行为》,说的就是这个体系在关联的作用下,成了莫特绝缘体。


第二个惊人的性质,是这个莫特绝缘体,在一定的条件下,又会变成超导体。什么条件呢?加个门电压,向体系中注入电子。这就是第二篇论文的标题,《在魔法角度下石墨烯超晶格中的非传统超导性》。曹原等人发现,这个体系的超导转变温度是1.7 K。


这两个性质之所以惊人,是因为了解超导的人一眼就可以看出来,这是典型的铜氧化物的行为。许多铜氧化物就是如此,本身是莫特绝缘体,但你如果通过掺杂改变化学组成之类的办法注入或者拿走一些电子,破坏掉原来“一个萝卜一个坑”的僵持局面,它一下子就变成了超导体。绝缘体和超导体相距得如此之近,这就是高温超导的一个典型表现!


现在我们可以理解,曹原等人的工作,重要性在哪里了。这个1.7 K的超导,本身没有实用价值,但是它给铜氧化物的超导提供了一条全新的线索。


Nature是如此的重视曹原等人3月5日的这两篇论文,以至于在3月8日还刊发了一篇评论,标题叫做“Surprise graphene discoverycould unlock secrets of superconductivity”(https://www.nature.com/articles/d41586-018-02773-w),中文意思是《惊人的石墨烯发现有可能解开超导的秘密》。其中提到,跟铜氧化物相比,层叠的石墨烯体系相对简单,理解起来要容易得多。因此,著名的理论物理学家、1998年诺贝尔物理学奖得主罗伯特·拉夫林(Robert Betts Laughlin)认为,这给出了一个令人目眩的暗示,就是铜氧化物的超导性一向就是简单的,它只是不容易准确计算而已。


拉夫林(Robert BettsLaughlin)


我们还不知道双层石墨烯和铜氧化物的超导机理是不是真的相同,也不知道铜氧化物的性质是不是都会出现在双层石墨烯当中,但是这些实验的结果已经给了我们足够的理由,来谨慎地庆祝一下。拉夫林说:“为了理解铜氧化物,物理学家已经在黑暗中摸索了30年,我们中的许多人认为有一盏灯刚刚被点亮了。”


说完了Nature的评论文章,我们现在要给读者一个提醒。高温超导在以前已经有过多次热潮,好几次看起来似乎要解决了,但结果还是更大的困惑。所以许多人已经退出了这个领域:实在是玩不起,不陪你玩了行不行啊?这次的突破会导致多大的收获,目前还在未定之天,只有更多的研究才能告诉我们结果。


我的一些理论物理学家朋友指出,高温超导之所以难以理解,核心问题之一就是,物理学的绝大部分计算都是基于微扰展开的方法。只要展开参数足够小,就可以只取微扰展开的最前面几项,使问题得到极大的简化。但是对于铜氧化物高温超导,微扰展开已经被证明是条死路。真的要理解铜氧化物,就必须发展非微扰的计算方法,这是一个巨大的挑战。从这个角度来看,即使双层石墨烯跟铜氧化物很相似,也不见得能立刻带来多大的帮助。如果基础理论没有突破,有一个体系我理解不了,你再给我三个五个类似的体系,我不还是理解不了嘛。——你是不是想起了《三体》里的“智子封锁”?


现在我们可以理解,像许多自媒体传的那样,“这个中国人一记神操作,竟解决了困扰全球百年的难题,全球震惊!”诸如此类的宣传,都是夸大其词的。孟子说:“有不虞之誉,有求全之毁。”我们应该实事求是,既不要捧杀,也不要棒杀。


· 对科学的宣传要高调,对个人的宣传要低调


我们再来谈谈,如何看待曹原同学。曹原是科大2010级少年班的师弟,跟我一样都是14岁上的科大。他的学习和科研成绩都是非常出色的,我在这里衷心地祝贺和祝福他,也非常高兴他为我国以至于全世界的学子,做出了一个很好的榜样。


不过,他毕竟还很年轻,正在成长的阶段。而且按照学术界的惯例,这项成果最大的功劳要归于论文的通讯作者,也就是他的导师、麻省理工学院物理系的副教授Pablo Jarillo-Herrero博士,其次才是第一作者曹原,然后还有论文的其他若干位作者。大家不妨仔细看一下这两篇文章,其他的作者还很多,而且其中也有中国人。


我们要注意,作为学生的成果再多,跟作为负责人的成果还是两回事。一个人在学术界能够走多远,归根结底是取决于他作为研究负责人的能力。因此,我希望媒体保持专业性,不要只想着炒作自己,而应该多为活生生的人着想,不要过早过多地去打扰曹原同学,让他保持平常心,在正常的环境里成长。这是一个专业问题,也是一个公德问题。


说得更直白一点,我建议媒体对年轻学子采取一种“保护性低调”的态度。《古惑仔》电影里,洪兴的老大蒋天养经常说:“社团的事要低调,赚钱的事要高调。”在这里,我对媒体的建议是:对科学的宣传要高调,对个人的宣传要低调。


诸位也许还希望我谈谈,如何看待少年大学生和所谓人才外流的问题。关于这些问题,我确实有很多可说的。不过因为可说的太多了,而篇幅有限,所以让我们以后再详谈。


今天,我希望大家最关心的不是这些俗世的争吵喧闹,而是科学独特的魅力。一个久攻不克的经典难题,通过另一个领域里看似完全八竿子打不着的研究获得了新的线索,重新燃起了希望之火,暗示着我们可能面临一个简单而出人意料的答案,这不是非常神奇和美妙吗?


正如李政道经常引用的杜甫的两句诗:“细推物理须行乐,何用浮名绊此身。


细推物理须行乐,何用浮名绊此身


科技袁人系列

“科技袁人”元旦首发,走近中国科技工作者

科技袁人第二弹:有人觉得中国科技太弱,因为全世界除了中国只有一个国家:“外国” | 风云之声

科技袁人第三弹:量子通信、液态金属、可燃冰……中国领先世界的黑科技,你知道几个? | 风云之声

去美国NASA访问,才听说中国人2020年都要登上火星了 | 科技袁人

搞科研中文有时不如英文,有些人就想出来要废除汉字?| 科技袁人

理解引力波很简单,只需要你先搞明白爱因斯坦的相对论…… | 科技袁人

中国的量子卫星究竟什么水平?也就比日本少用了99999999个光子 | 科技袁人

为什么不该拿科学家去和明星比收入?听听这三位诺奖得主的故事 | 科技袁人

喵星人可能早就发展出了引力波探测技术,否则为什么每次我刚想倒猫粮…… | 科技袁人

中国有些教授竟然觉得造银河计算机没用,我都惊呆了 | 科技袁人

我,科大,用大数据给学生打钱 | 科技袁人

被有些人吹上天的日本人“工匠精神”,到底是个什么东西? | 科技袁人

相信那些治绝症的微信神文,这本身是一种“反智”病! | 科技袁人

真有人认为中国没有哲学家?我一个化学博士都坐不住了 | 科技袁人

霍金离开了,比起去争论他有多伟大,更该了解他为我们做了什么 | 科技袁人

中国网速不如阿富汗?这些都是黑中国的套路 | 科技袁人

我们都知道钱学森的伟大精神,那么他的贡献有多强?| 科技袁人

今天,让我们纪念,一位为中国保留未来种子的师长 | 科技袁人





欢迎关注风云之声


知乎专栏:

http://zhuanlan.zhihu.com/fengyun

一点资讯:

http://www.yidianzixun.com/home?page=channel&id=m107089

今日头条:

http://toutiao.com/m6256575842




    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存