【资源放送】期末资料大放送(1)
点击上方蓝字,关注“小丁话数学”哦!!
临近期末考试,小丁为浴血奋战的学子们搜集和整理了一些迎考资料,今天给大家奉上应用题专栏(1)。
源1:基本不等式之窗格型
题1:(2012届苏锡常镇二模)如图,已知矩形油画的长为a,宽为b.在该矩形油画的四边镶金箔,四个角(图中斜线区域)装饰矩形木雕,制成一幅矩形壁画.设壁画的左右两边金箔的宽为x,上下两边金箔的宽为y,壁画的总面积为S.
(1)用x,y,a,b表示S;
(2)若S为定值,为节约金箔用量,应使四个矩形木雕的总面积最大.求四个矩形木雕总面积的最大值及对应的x,y的值.
题2:(2014届南京高三9月期初)
如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分).道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.
题3:(2008届苏锡常镇高三一模)
如图,一个铝合金窗分为上、下两栏,四周框架和中间格栏的材料为铝合金,宽均为6cm,上栏和下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用墙面面积为28800cm2,设该铝合金窗的宽和高分别为a,b,铝合金的透光部分的面积为S.
(1)试用a,b表示S;(2)若要S使最大,则铝合金窗的宽和高分别为多少?
题4:(2016届苏州高三指导卷2)
中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L.
(1)试用x,y表示L;
(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?
源2:函数y=a/x^2+b/(c-x)^2型
题5:(2011连云港一模)据环保部门测定,某处的污染指数与附近污染源的强度成正比,与污染源距离的平方成反比,比例常数为k.现已知相距18km的A、B两家化工厂(污染源)的污染强度分别为a,b,它们连线上任意一点C处的污染指数y等于两家化工厂对该处的污染指数之和.设AC=x.
(1)试将y表示为x的函数;(2)若a=1,x=6时,取得最小值,试求b的值.
题6:如图,为相距的两个工厂,以AB的中点为圆心,半径为2km画圆弧,为圆弧上两点,且MA⊥AB,NB⊥AB,在圆弧MN上一点P处建一座学校.学校P受工厂A的噪音影响度与AP的平方成反比,比例系数为1,学校P受工厂B的噪音影响度与BP的平方成反比,比例系数为4.学校P受两工厂的噪音影响度之和为y,且设AP=xkm.
(1)求 y=f(x),并求其定义域;
(2)当AP为多少时,总噪音影响度最小?
题7:(2012镇江高三一模)一海湾,海岸线为近似半个椭圆(如图),椭圆长轴端点为A,B,AB间距离为3km,椭圆焦点为C,D,CD间距离为2km,在C,D处分别有甲,乙两个油井,现准备在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙的8倍.
(1)设乙油井排出的浓度为a(a为常数)度假村P距离甲油井xkm,度假村P受到甲乙两油井的污染程度和记为f(x),求f(x)的表达式并求定义域;
(2)度假村P距离甲油井多少时,甲乙两油井对度假村的废气污染程度和最小?
题8:(2009山东高考)两县城A和B相聚20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度 与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对称A和城B的总影响度为0.0065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由.
源3:分段函数型
题9:经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km 的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:L)与速度v(单位:km/h)的关系近似地满足
(1) 设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;
(2) 卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
源4:三次函数型
题10:(2015苏北四市期末)如图,有一个长方形地块ABCD,边AB为2 km,AD为4 km.地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF(EF与AC相切),E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位:km2).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3 km2?并说明理由.
源5:分式函数型
题11:(2015江苏高考)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以l1,l2所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=a/x^2+b(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式,并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
源6:三角函数型
题12:(2015届苏锡常镇一模)如图,有一段河流,河的一侧是以O为圆心、半径为10m的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为45°,30°和60°.
(1) 求烟囱AB的高度;
(2) 如果要在CE间修一条直路,求CE的长.
源7:解析几何型
题13:如图,O为总信号源点,A,B,C是三个居民区,已知A,B都在O的正东方向上,OA = 10 ,OB = 20 ,C在O的北偏西45° 方向上,CO =5根号2.
(1)求居民区A与C的距离;
(2)现要经过点O铺设一条总光缆直线EF(E在直线OA的上方),并从A,B,C分别铺设三条最短分光缆连接到总光缆EF.假设铺设每条分光缆的费用与其长度的平方成正比,比例系数为m(m为常数).设∠AOE = θ(0≤θ <),铺设三条分光缆的总费用为w(元).
① 求w关于θ的函数表达式;
② 求w的最小值及此时的值.
源8:立体几何型
题14:某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π/3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3).设该容器的建造费用为y千元.
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.
题15:(2006江苏高考)请您设计一个帐篷.它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示).试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?
题16:(苏州2016高二数学统测)如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y百元.
(1)按下列要求写出函数关系式:
①设OO1=h(米),将y表示成h的函数关系式;
②设∠SDO1=θ(rad),将y表示成θ的函数关系式;
(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.
源9:经济学利润型
题17:某公司销售一种液态工业产品,每升产品的成本为30元,且每卖出一升产品需向税务部门交税a元(常数a,且2≤a≤5).设每升产品的售价为x元 (35≤x≤41),根据市场调查,日销售量与e^x(e为自然对数的底数)成反比例.已知当每升产品的售价为40元时,日销售量为10升.
(1)求该公司的日利润y与每升产品的售价x的函数关系式;
(2)当每升产品的售价为多少元时,该公司的日利润y最大?并求出最大值.
未完待续
解几运算,何去何从?
【试卷在线】高一12月月考试卷(自编)
教育是慢的艺术
千题万卷总是情,试题命制别任性
众里寻他千百度,蓦然回首阿氏圆
大片来袭……