反比例函数上的动点问题
破解反比例函数
我有秘密武器
小V是一位勤学好问的同学,他今年初二,马上就要升初三了!不过,下周他将面临初二的最后一次学情质量检测。他认为学校应多元评价学生,其中考试成绩也是一项重要的指标:它表面是对学生一学期学习的知识掌握情况的考察,实际是对学生平时学习态度(有无克服困难的毅力)、学习方法(能否及时调整学习策略、合理安排学习时间)及考试期间心理素质(是否拥有平和、积极的心态)等的综合考察。
他很认真的在准备这次学情质量检测!在复习的过程中,他遇到了一类棘手的问题,那就是反比例函数上动点问题的考察。于是,他向Aran老师请求帮助,Aran老师结合他的问题和疑惑,给他支了一个小妙招:构造相似模型!
小V还是个乐于助人的同学,他决定把他的收获分享给同样认真备考的同学!希望这些同学像他一样,为初二画上一个圆满的句号!
解析:当点A在第一象限反比例函数图像上运动的时候,它与坐标轴围成的矩形AEOF的面积
因为∠AOB始终为90∘,我们可以构造“k”字型相似,即△AOF∽△OBN,因此利用相似三角形的性质(相似三角形的面积比等于相似比的平方)知:
小V从理论上接受了点B的轨迹是反比例函数第二象限的一个分支,但总感觉不够通透,于是我给他演示了它的轨迹!看后他瞬间秒杀了第2题!
解析:由1的解答我们可知点C运动的过程中,与坐标轴围成的面积是点A与坐标轴围成面积的
透过以上两题的分享,小V感受到了三角形相似的魅力:只要构造出两个相似的三角形,那么如果知道其中一组对应边的比值,即可求其他各边的比及面积比。
Aran老师听了小V的感触后,禁不住为他鼓掌:孺子可教也!于是决定出2道题目考考他,让他进一步感受相似的魅力:利用相似的性质(相似三角形对应边成比例)构造等量关系求参数。
解析:根据|k|的几何意义,我们只要知道点A或点C与x轴和原点围成的三角形的面积即可。(点击查阅:|k|几何意义)
4、如图,已知点A是反比例函数
(1)若BC=2AC,求点D的坐标(用含a的代数式表示);
(2)若OC=3,当四边形BCDE是平行四边形时,求a的值,并求出此时直线l对应的函数表达式。
解析:(1)由A点坐标可表示出AE的长,利用相似三角形的性质可求得CO的长,代入反比例函数解析式可表示出D点坐标;
(2)由条件可求得D点坐标,由平行四边形的性质可得△ACF∽△ABE,利用相似三角形的性质可求得a的值,则可求得A点坐标,由A、C的坐标,利用待定系数法可求得直线l的函数表达式.
点击以下关键词,查看更多往期内容
VOA数学(学生qq群):646642709
VOA数学(教师qq群):796780274