查看原文
其他

【容斥问题】小学数学典型应用题二十三

请收藏好以下图片预课资料

(点击上图可观看视频及下载课件教案)

【归一问题】小学数学典型应用题第1讲

【归总问题】小学数学典型应用题第2讲

【和差问题】小学数学典型应用题第3讲

【和倍问题】小学数学典型应用题第4讲

【差倍问题】小学数学典型应用题第5讲

【年龄问题】小学数学典型应用题第6讲

【相遇问题】小学数学典型应用题第7讲

【追及问题】小学数学典型应用题第8讲

【植树问题】小学数学典型应用题第9讲

【行船问题】小学数学典型应用题第10讲

【列车问题】小学数学典型应用题十一

【时钟问题】小学数学典型应用题十二

【盈亏问题】小学数学典型应用题十三

【工程问题】小学数学典型应用题十四

【百分数问题】小学数学典型应用题十五

【方阵问题】小学数学典型应用题十六

【牛吃草问题】小学数学典型应用题十七

【鸡兔同笼问题】小学数学典型应用题十八

【抽屉问题】小学数学典型应用题十九

【浓度问题】小学数学典型应用题二十

【税率利率问题】小学数学典型应用题二十一

【利润问题】小学数学典型应用题二十二




容斥问题

【含义】


    容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。


常见的容斥问题有两者容斥、三者容斥两种。



【数量关系】


A∪B = A+B - A∩B

A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C



【解题思路和方法】


先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。可画文氏(韦恩)图来解题。



例1:



有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。

钉成的木板长 _____ 厘米。
解:    1、本题考查了学生的运算能力、应用能力。解决重叠问题时,要注意重叠的部分不能重复计算。


2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。

例2:


有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长(  )厘米。

A、2    B、4    C、8   D、16


解:

1、此题考查孩子的应用能力、运算能力。孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。

 

2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。选择B。

例3:



某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?



解:

根据题意画图

2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。


3、由图可知,6、9、10人都是两两重叠的部分,被多算了一次,要减去:60-6-9-10=35(人),但要注意,图中的3人,在计算19、20、21的和的时候被加了三次,在“-6-9-10”的时候又被减了三次,那么相当于漏算了这3人,所以我们应该将漏算的3人加上,35+3=38(人),这38人是至少有一项达到优秀的人数,算全班总人数,还需要加上三项都未达到优秀的4人,所以共有38+4=42(人)。



往期资料推荐



1-9年级(上下册)各科目电子课本

1~9年级各科目全册PPT课件教案

1~6年级语文(上下)全册图文视频

1~6年级数学(上下册)图文视频(各版本)

1~6年级英语(上下册)图文微课(各版本)

1~6年级科学(上下)全册微课+课件教案

1~6年级美术(上下)全册微课+课件教案

1~6年级音乐(上下)全册微课+课件教案

1~6年级道德与法制(上下册)同步微课+课件

1-9年级英语48个国际音标发音+口语教程

一年级汉语拼音声母韵母动画微课

班主任工作资源(2569世班会课件等资料)


关注领取更多资源


第一步:长按二维码关注人工智能与教学

图文来自网络,版权归原作者,如有不妥,告知即删



请点击以下 【阅读原文】下载

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存