两只小鼠的江湖 (二)
导读
这一系列讲述两个生物技术公司——GenPharm/Medarex和Abgenix的故事。它们是用转基因小鼠技术研发全人源单克隆抗体药的先驱。今天单抗药的全球年销售额约1000亿美元,其中20%来自基于这两个公司的技术推出的产品,而且这个比例还在逐年增长。这个系列共分四篇,将于四个周末连载完。参考资料将在最后一篇文末列出。下面是前文的链接:
Cell Genesys和GenPharm几乎同时在旧金山地区成立,并于1990年7月获得了7百万美元A轮融资。投资者包括Mayfield, Robertson Stephens, Interwest和斯坦福大学。
Cell Genesys的科学领头人之一是艾亚●亚克波维茨(Aya Jakobovits)。 她也是公司最早的三名科研人员之一。她在以色列的魏茨曼科研所获得博士学位。在加州大学旧金山分校做博士后期间,她主攻小鼠胚胎干细胞方面的项目。亚克波维茨本来计划在博士后的训练结束之后就返回以色列,但她临时决定在美国找一个分子生物学实验室先工作几个月。这个决定改变了她的人生轨迹。几个月变成了几年。在她1989年加入Cell Genesys之前,她已在基因泰克工作了3年。
Cell Genesys起家的技术是通过DNA同源重组来改变哺乳类细胞基因,在此基础上又衍生了三个开发方向:生产蛋白药、制备全人源的单抗、建立“通用供体细胞”用于基因治疗和细胞治疗。亚克波维茨和她率领的20多人的科研团队专攻第二个方向。这个团队包括分子生物学家、胚胎和小鼠专家、免疫学家和细胞学家。在公司的联合创始人、阿尔伯特爱因斯坦医学院分子遗传系的主任Raju Kucherlapati的帮助下,他们花了几年的时间创建了XenoMouse技术平台(Xeno是外来的,Mouse是小鼠, 两个词合起来代表着转基因小鼠)。
1991年6月,Cell Genesys进入了公司早期最重要的战略合作——接受日本烟草公司的股权投资,建立人源抗体转基因小鼠,并成立合资企业Xenotech, 专门销售由转基因小鼠提供的单抗。在随后的两年里,日本烟草公司提供了资金2千4百万美金。1994年1月6日,双方又进一步扩展合作。日本烟草再次注资2千万,Xenotech在1997年前开发的单抗药的北美权力将归Cell Genesys所有,而东亚地区的权力归日本烟草。
1992年10月,Cell Genesys通过私募融得9百万美元。1993年1月,Cell Genesys抓住了股市的窗口,成功IPO,融资将近4.1千万美元。同年11月,公司又通过后续股票发行募集了3.54千万美元。同近邻的GenPharm相比,Cell Genesys财力优势比较明显。在拥有了大金主的联盟和股市募资的渠道后, Cell Genesys在1993年底已储备了将近8.6千万的现金。在继续完善XenoMouse技术的同时,它还对竞争对手GenPharm发起了致命的一击。
1994年对两个公司来说都是非常重要的一年。2月份开始的那一场官司将两家公司拽入了长达3年的纠纷,最后几乎让GenPharm解体。Cell Genesys的主要指控是GenPharm通过一个科学顾问窃取了敲除小鼠基因的技术机密。这名顾问Frederick Alt当时在哥伦比亚大学任职,是一位著名的免疫学家、霍华德.休斯医学研究所的研究员。他在1990年曾同时为两家公司提供咨询服务。Cell Genesys指控他四年前尽管签了保密协议,还是把Cell Genesys的科研进展和专利申请情况通报给GenPharm。另外,Cell Genesys 也试图证明GenPharm的关于敲除小鼠抗体基因的专利无效。GenPharm和Alt立刻否认所有指控。
Cell Genesys的指控基本是建立在推测和怀疑上,没有什么具体的证据。朗博曾经评论道,“他们在技术上明显落后,但在资金方面明显领先。”Cell Genesys似乎想要通过法律手段来扳回技术上的劣势。这起法律纠纷如乌云一般一直笼罩在GenPharm上空,数年不散。
但1994年也是科学上的一个里程碑。在诉讼案接受受理两个月之后,GenPharm和Cell Genesys几乎于同一时间分别在《自然》和《自然遗传学》期刊上发表了重量级的论文,宣告了HuMAb和XenoMouse技术的正式建立。
每个技术平台实际上都要先产生四株小鼠。第一株的小鼠中抗体重链通过DNA重组而被破坏,导致体内没有成熟的B细胞;第二株的自身k轻链被破坏,第三株和第四株则分别引进了人的重链和k轻链。然后再通过四株小鼠之间多轮杂交而最终产生的小鼠只具有表达人源抗体的B细胞。两个公司的不同在于第三株和第四株构建上的技术细节差异。在HuMAb中,人抗体基因DNA是注射到小鼠受精卵的前核里。引进的基因包括重链的3个V区,16个D区,6个J区, 以及m和g1不变区(即可表达IgM又可表达IgG1), 轻链的4个V区,5个J区和一个k不变区。在XenoMouse中,携带在酵母人工染色体上的人源抗体基因是通过酵母原生质球和小鼠的胚胎干细胞融合而转到小鼠上。引进的基因包括重链的5个V区,25个D区,6个J区, 以及m和d不变区(即可表达IgM又可表达IgD), 轻链的2个V区,5个J区和一个k 不变区。
双方的内力都已达到第8层,虽然离最高境界第11层还相差甚远,但当时世上已无人能出其右。两个公司昂昂然比肩于硅谷, 鸟瞰天下。但谁也没想到,二者之间难以避免的战争不是在内力、武功上一决高低,而是在法庭上惨烈厮杀,在资金市场上重重围堵。
的至暗时期
1994年3月,GenPharm反戈一击,对Cell Genesys启动了交叉诉讼。在1996年2月,GenPharm又追加控诉Cell Genesys违反了反竞争法。Cell Genesys矢口否认了他们打官司是为了扳回在技术竞争上的劣势,并成功地把法庭判决日期拖延到了1997年。
官司走向的不明朗和技术专利归属权的不确定性不但阻止了GenPharm 上市,也严重限制了它吸引新的融资和合作。1994-1997年成为GenPharm的谷底期。没有新的资金进来,GenPharm的血几乎流干。
为了让在荷兰的子公司不受法律纠纷的影响,1995年4月GenPharm董事会决定把GenePharming分离出去,成为一个独立的公司,更名为Pharming B.V.。 这样股东在欧洲公司的利益可以得到保护。
为了保留现金,减少开支,GenPharm把其他所有业务都卖掉,只保留了HuMAb技术。公司大规模裁员。1994年的110名员工到了1995年底仅剩7人。1994年那篇《自然》论文的18名作者中,有16名相继在95年和96年离开了公司。朗博是留下的最后两位科学家之一。
公司把现有的实验室和办公场所转租给另一家生物技术公司,自己再搬到Genencor公司,借用一小块儿空间暂时寄居。Genencor是GenPharm的股东之一。朗博可以在Genencor实验室里做实验。作为交换条件,他需要给Genencor公司提供一些咨询服务。GenPharm基本只剩下一个壳,进入了半冬眠状态。
在那段黑暗的日子里,朗博也几度彷徨。他在建立世界上最前沿的技术,却没有资源和团队的支持。在实验室里劳累了一天后,他开车行驶在夜色笼罩下的101号高速公路上,看到公路另一侧一排排的发出白色灯光的车群奔流不息,而自己这侧的车流也在蜿蜒前行,无数个红色的尾灯灯光连成一片,延续到视野尽头。他问自己,这一切都值得吗?公司还有希望吗?他能看到技术平台成功的那天吗?
这三年里GenPharm在科研上还是取得了一定的进展。1996年5月发表在《自然生物技术》的一篇论文标志着GenPharm在抗体多样性上已达到第9层。在该论文中,GenPharm还用改进后的小鼠及其衍生杂交瘤细胞产生出多个针对CD4的高亲合性的抗体。CD4 是自身免疫疾病中的靶蛋白。HuMAb被初步证明可以用来推出单抗药。
在那段时间里GenPharm的另一项主要业务是打官司。在美国打官司是很昂贵的一件事。GenPharm无法支付这笔律师费,便和律师事务所达成“胜诉分成”协议。等到了97年,GenPharm与Cell Genesys和解后,得到了3千万美元的补偿。其中律师拿走了一半。
和XenoMouse技术的成熟
在90年代中期,细胞治疗和基因治疗的概念炙手可热,吸引了各大制药公司的浓厚兴趣。Cell Genesys因此大为受益。1995年10月,Cell Genesys和德国的Hoechst公司达成协议,共同开发利用基因改造的T细胞来治疗艾滋病(同今天的CAR-T技术有些类似)。Cell Genesys得到2千万美元的股权融资,并将来最多可获益1.4亿美元。
在这种形势下,Cell Genesys决定把重点放在基因和细胞治疗上。以我们今天的眼光看,这两个方向没有错,但技术在当时还远不成熟。在错误的历史节点做出了错误的决定,导致Cell Genesys在13年后草草收尾。
1996年6月27日,Cell Genesys把与抗体和XenoMouse有关的科研和业务都分离出来,并成立一个子公司Abgenix。母公司提供了1千万美元的启动资金, 并把和日本烟草公司的合作也转到子公司上。Abgenix分到了40名员工,亚克波维茨成为其科研掌门人。其管线组合包括三个抗体候选药,一个是抗癌药,两个是抗炎症药。
Abgenix于1997年2月在《自然遗传》上发表的论文标志着XenoMouse技术平台的成熟。在这篇论文中,将近200万碱基对(2Mb)的人源抗体基因通过两个酵母人工染色体被转入到小鼠的胚胎干细胞里。最后的小鼠株(XenoMouse II)的B细胞高效地表达人源抗体。其抗体基因包括了重链的66个V区和轻(k)链的32个V区,抗体的多样性已达到前所未有的第10层。Abgenix团队也在XenoMouse II中对三个靶抗原(IL8, EGFR, 和TNFa)都能产生多种高亲和性、高特异性的人源抗体。文章的另一个重要发现是引进的DNA片断的大小不仅仅影响抗体库的规模,也影响B细胞发育和数量。引进的片断越大,成熟和未成熟的B细胞的数量也越接近自然状态。在技术上Abgenix此时已超过GenPharm, 独步江湖。但这个技术统治地位并没有保留多久。4个月以后,在同一期刊上发表的另一篇论文颠覆了整个转基因小鼠单抗技术的格局。
从1996年10月到97年1月,GenPharm陆续在美国获得了三项和转抗体基因小鼠有关的专利。GenPharm确定了在知识产权的优势,开始反攻,起诉Abgenix及其母公司侵权。
1997年1月,Cell Genesys撤回了对GenPharm的诉讼,并开始谈判。形势出现了大反转。3月,两个公司签订了专利交叉许可协议。双方在知识产权上不再有任何法律纠纷,都承认对方在转抗体基因小鼠技术上专利的合理性。Cell Genesys和日本烟草公司分阶段支付3千万美金给GenPharm。在经历了3年的麋战后,双方终于偃旗息鼓,可以各自专注于继续开发技术。挣脱了身上绷紧的绳索,驱散了头上的乌云, GenPharm和Abgenix开始迎来了资本的注入,进入了高速增长阶段。单抗药的研发进入了黄金时代。
几乎在和解的同时,GenPharm和Centocor签署了合作协议,将共同开发几种人源单抗药。GenPharm最多可获益5千7百万美金。
1997年10月,总部位于新泽西州的一家已经在纳斯达克上市的生物技术公司Medarex以6.22千万美金的价格收购了GenPharm。由于GenPharm刚从法律纠纷里解脱出来,这个收购价格可以说大大低估了公司的价值。正如12年后BMS收购Medarex一样, 收购方都捡了一个大便宜。当然收购成功的一个重要前提是关键人才的保留。在两次收购中,朗博都没有离开。
总部设在普林斯顿的Medarex名字中的Medar代表达特茅斯医学院,ex代表Essex化学公司。但公司名字的由来和创建起源已经并不重要。吞并了GenPharm之后,Medarex脱胎换骨成为HuMAb技术的传承人。它甚至舍弃了公司的起始技术——把癌细胞和巨噬细胞拉到一起的双特异性单克隆抗体技术。和基因/细胞治疗技术一样,双特异性单抗技术在今天成为热门,但在90年代还不成熟。和Cell Genesys不同的是,Medarex在面临策略性的决定时押对了宝,把所有资源都放到HuMAb技术上,并在随后的几年里将其发扬光大,又通过科研合作的方式使技术升级换代。Medarex从此和Abgenix在技术和商业上展开了良性竞争,以致于两个公司平台衍生的产品占据了今天全人源抗体药的大半壁江山。
来自麒麟啤酒公司的超级小鼠
GenPharm/Medarex和Abgenix把内功练至极致,也只能达到第9层、第10层。要想抗体多样性达到最高的第11层,要想实现在小鼠体内完整再现全套人源抗体库的终极目标,用现有常规手段很难实现。现有技术能转进小鼠体内的基因的规模最多是2Mb。但在1997年, Abgenix的《自然遗传》论文发表四个月后,这个极限却被轻松超越,第11层终于被攻破。意外的是,这次超越没有发生在美国,而是在日本。而且是在一家啤酒公司的实验室里。
完成这一创举的是日本的科学家石田功(Isao Ishida)。他1989年曾在麻省理工学院Susumu Tonegawa实验室做博士后。Tonegawa因为发现抗体多样性的遗传基础而在1987年独拿诺贝尔生理或医学奖。石田功在加入日本麒麟啤酒公司(Kirin Brewery) 后,在公司支持下, 于1992年启动了一个与公司业务完全无关的科研项目:用基因工程改造小鼠,表达人源抗体蛋白。但他也不是全职做这个项目——他还同时从事转基因农作物的科研工作。在5年后,当他和团队在《自然遗传》上发表了震惊世界的成果时,他也是《自然生物技术》的一篇关于转基因土豆的论文的5个作者之一。
在项目刚启动的时候,石田功基本上是单枪匹马。他一直密切关注GenPharm/Medarex和Cell Genesys/Abgenix的进展,也熟读了两个公司在94年发表的论文。他意识到,虽然美国的两个团队的技术处于领先地位,但他们的技术会遇到天花板。不管用什么样的方式转基因,很难把人抗体重链或轻链的基因和其调控序列滴水不漏地全盘塞到小鼠细胞里。除非把整个染色体或大的染色体片断转进去。这恰恰是石田功做的。
人的抗体重链、轻链l、轻链k分别在染色体14号、22号和2号上。当时学术界普遍认为通过转染色体的方式建立转基因动物是行不通的。多一个或少一个染色体的干细胞将失去其多能性。另外一个普遍的观点是染色体数的异常会导致细胞分裂时传代不稳定。传几代后没有配对的染色体往往会丢失。但石田功还是决定尝试一下。
石田功的实验设计的第一个巧妙之处是他挑选人的皮肤(成纤维)细胞作为染色体的来源。皮肤细胞不表达抗体,所以它的抗体基因在转录上是沉默的,因而小鼠细胞没有排斥额外的染色体。
他的第二个巧妙之处是他把一个抗药性基因插到了人源染色体的抗体基因附近。这样便于选择性地扩增带有人染色体片断的融合细胞,而且那段染色体往往带有人的抗体基因。
石田功的第三个巧妙之处在于采用了微细胞介导染色体转移技术(MMCT),一个在20年前被发明的用于体细胞的技术。石田功通过人皮肤细胞和小鼠细胞的多轮融合,产生了几百个微细胞。每个微细胞只含一个染色体片断或微染色体。含有特定染色体片断的微细胞再和小鼠胚胎干细胞融合,然后再把融合好的细胞注射到小鼠的8细胞胚胎中。产生的小鼠是嵌合型的,有的细胞带有额外的微染色体,有的不带。但人的抗体库在小鼠的B细胞群里得到完整表达。 嵌合小鼠之间产生的后代会出现纯种的小鼠,每个细胞都携带41条染色体(正常小鼠的体细胞有40条或20对染色体)。
1997年6月,石田功把这一成果发表在《自然遗传》上,立刻引起轰动,被《纽约时报》和《华盛顿邮报》等多家媒体报道。用染色体片断做载体,石田功团队把转基因的极限扩大了至少10倍。抗体多样性的顶峰第11层触手可及。这种用新方法改造的小鼠被命名为TC小鼠,或转染色体小鼠。
在文章发表后,Medarex和Abgenix都和麒麟公司联系,希望建立合作关系。在2000年1月,麒麟公司和Medarex成为战略合作伙伴。麒麟看重Medarex在知识产权上的主导地位。而Medarex即可获得TC小鼠技术,又可获得资金(1千2百万美元)。双方把各自的技术结合起来,通过TC小鼠和HuMAb小鼠杂交,产生了KM小鼠(K代表麒麟,M代表Medarex)。KM小鼠的小鼠抗体基因被敲除,但携带人的14号和2号染色体片断。在走过将近10年的历程后,达到第11层的终极小鼠终于问世。(未完待续)
本页刊发内容未经书面许可禁止转载及使用
公众号、报刊等转载请联系授权: Rebecca.du@lavfund.com
欢迎转发至朋友圈
近期文章
Portfolio公司新闻
Portfolio | Gritstone Oncology与bluebird bio合作开发肿瘤免疫细胞疗法,并筹划IPO (2018-08-24)
Portfolio | Alector完成1.33亿美元E轮融资,开发阿尔兹海默症的免疫疗法 (2018-08-20)
Portfolio | 基因编辑公司博雅辑因(EdiGene)宣布完成亿元PRE-B轮融资 (2018-08-13)
Portfolio | 英派药业成功完成3000万美元C轮融资 (2018-08-03)
Portfolio | "E药经理人"专题报道:康希诺生物 (2018-07-07)
Portfolio | "研发客"专题报道:英派药业 (2018-07-03)
Portfolio | 奕安济世顺利完成B+轮3500万美元融资 (2018-06-06)
Portfolio | Ansun生物制药成功完成A轮8500万美金融资 (2018-05-15)
Portfolio | 礼来16亿美元收购ARMO BioSciences (2018-05-11)
Portfolio | 迈博斯生物宣布完成4000万美元B轮融资,加速临床项目推进 (2018-05-09)
Portfolio | Avedro融资2500万美元,礼来亚洲基金领投 (2018-05-03)
Portfolio | BioCentury专题报道科望医药 (2018-04-27)
Portfolio | Tmunity在A轮融资中增筹3500万美元 (2018-04-19)
Portfolio | Terns Pharmaceuticals获得礼来三项NASH资产的全球独家开发和商业化权益 (2018-04-04)
Portfolio | 礼来亚洲基金参与Tempest Therapeutics 7000万美元的B轮融资 (2018-03-30)
Portfolio | 鹍远基因完成6000万美金的A+轮融资 (2018-03-28)
礼来亚洲基金的投资组合公司近期新闻回顾 (2018-03-23)
行业趋势
原创
疫苗引起自闭症? 一起影响深远的学术欺诈 (2018-07-28)
欢迎关注: