Masdar城市入口设计,对自然的敬畏,对古典美学精神的追求和对技术革新的认同
The following article is from MFSCAPE Author SUN
○关注我们, 请点击屏幕上方 UniDesignLab
本文转自公众号 MFSCAPE
Return to the Source, to be published by Prestel in January 2020.
http://landartgenerator.org
PART 1
AWE & ENLIGHTENMENT | 敬畏与启示
激荡的笔触和交错的冷暖光源形成的光感与空气感,使形式趋于瓦解,产生无边无际的空间和不可捉摸的神奇光线。透纳敏锐的捕捉到一种处于喧嚣混乱自然之力中的秩序,这种秩序紧密相关于那些改变我们对自然固有认知的科学发现。技术进步带来时代变革,观看成为视觉上的隐喻,新的语言随之诞生,以试图探索和阐述那些隐藏的自然之力。崇高不仅是自然的伟大力量,也体现在人类面对自然挑战富有创造性的应对方式中。
The sense of light and air formed by the stirring brush strokes and the alternating cool and warm light sources tends to disintegrate the form, thus creating infinite space and unpredictable magical light. The painter Joseph Mallord William Turner was keen to capture order in the force of turbulence and chaos, which is closely related to scientific discoveries that change our original perception of nature.
Technological progress has brought about changes in the times, viewing has become a visual metaphor, and a new language has been born in an attempt to explore and explain the hidden forces of nature. Lofty is not only the magnificent power of nature but also presented in creative ways for human beings to cope with nature's challenge.
SURGE体现对自然的敬畏,对古典美学精神的追求和对技术革新的认同。设计方案的目标是充分利用自然资源,并协同人与自然、文化成为一个整体。
SURGE represented the awe of nature, the pursuit of the spirit of classical aesthetics, and the approval of technological innovation. This proposal aims to make full use of the natural resources, and synergies as a whole between nature, human and culture.
Green Portal | 绿色入口
为了增强线性公园和街道的空气流动,SURGE延续了主导风向和城市肌理,正北轴向38度逆时针偏转,与现有城市规划相呼应。受当地独特气候环境和传统阿拉伯美学启发,设计方案试图创造一个具有高度美学与生态价值的绿洲,配合以卓越的工程及能源领域前沿技术以形成场地内良好的小气候,保持生态平衡,并为周边区域提供能源。SURGE将成为Green finger公园系统的有效连接点和阿布扎比Masdar市划时代的新地标。
To enhance air movement in linear parks and the streets, SURGE followed the direction of the prevailing wind and urban fabric, 38 degrees counter-clockwise of the north axis corresponding to existing planning. Inspired by local climate and the unique traditional Arab aesthetics, the proposal is trying to create an oasis of high aesthetic and ecological value, which is supported by extraordinary technologies in the field of engineering and energy to create a good microclimate in the site, maintain the ecological balance, and provide energy for the surrounding area. SURGE will be an effective connection in the Green finger park system and a new epochal landmark of Masdar City, Abu Dhabi.
Resource Habitat | 能源栖息地
SURGE将多项前沿领域的技术创新结合到简洁的设计形式中,以多种能源收集的方式捕捉蕴含在大自然中的无限能量。每年产出9,582,345兆瓦时的清洁能源将供给周边的住宅、商业及研发机构使用,在未来将成为该区域的驱动核心以吸引技术与资源的汇集,建立自然、人文、技术的栖息地,契合阿联酋对未来探索的雄心与愿景。
SURGE combines several cutting-edge technological innovations into a simple design that captures the infinite energy contained in nature through a variety of energy collection methods. The annual output of 9,582,345MWh of clean energy will be used by the surrounding residential, commercial and research and development institutions, and will become the driving core of the region in the future to attract the convergence of technology and resources, creates a natural, cultural and technological habitat, which is in line with the UAE's ambition and vision for future exploration.
Connected Entity | 连接的整体
SURGE独特的尺度和视觉形象,使人联想到自然巨大的,令人敬畏的力量,置身其中引发人对存在的感知与思考。作为“遮蔽的绿洲”,这是一个可供穿行、聚集、休闲、冥想的场所。设计方案兼具历史与未来的视角,表达了对阿拉伯艺术文化伟大遗产的敬意。利用自然资源产出的能量反映了人类探索自然,与自然共存的追寻,创新和进步是人与理念以新方式结合的结果。一个世界范围的枢纽,一个开放、尊重、包容的“核心”,多样性、思想与灵感在此汇集,在这里SURGE具有无限创新与可持续开发的潜力。
SURGE's unique scale and visual image reminds people of the enormous, awesome power of nature, triggers people's perception and thinking of existence. As a "shaded oasis", this is a place for passage, gathering, relaxation, and contemplation. The proposal combines historical and future perspectives to express respect to the great heritage of Arab art and culture. The energy output of the utilization of natural resources reflects the pursuit of human exploring and co-existing with nature. Innovation and progress are the results of the combination of people and ideas in new ways. A world range hub, an open, respectful and inclusive "core" where diversity, ideas, and inspiration come together, in here SURGE has great potentials in innovation and viability of sustainable developments.
Environment Oriented Approach | 环境驱动设计
通过对当地风/水/太阳能能源富集情况的研究,我们团队得出了以下结论:
1.太阳能:当地太阳辐射量平均为每月5.6k-5.9k左右,足以满足光伏材料收集能量的上限。
2.风能:从全年来看,平均风速约为25km/h,整个场地以西北风为主,为风的收集奠定了良好的基础。
因此,在能源方面,我们团队选择了稳定的太阳能发电作为主要能源,利用风能产生机械能的拍打摩擦纳米发电机和收集行人行走压力机械能的压电路面作为附加能源。
After studying the local wind/water/solar energy enrichment, our team came to the following conclusions:
1. Solar energy: The local solar radiation amount is about 5.6k-5.9k per month on average, which is enough to meet the upper limit of energy collected by photovoltaic materials.
2. Wind energy: From the perspective of the whole year, the average wind speed is about 25km/h, and it is dominated by the northwest wind across the whole site, which also lays a good foundation for wind collection.
Therefore, in terms of energy, our team chose the stable solar power generation as the main energy source, the flapping friction Nano-generator generating mechanical energy by wind energy and the piezoelectric pavement collecting the mechanical energy of pedestrian walking pressure as the additional energy source.
Environmental Impact | 环境影响
设计过程的一个重要部分是找到一种既能利用能源又能对场地造成最小干扰的装置设计方法。因为场地并非环境敏感的生态栖息地,大尺度装置可建于场地的沙质土壤中,并在每个柱子中配备独立基础以保证结构稳定。
单元本体可捕获光线与风,单元间彼此连接形成一个透光通风的遮蔽物,过滤强烈的太阳光线,同时增强空气流动,引导形成令人愉悦的微风通过场地,减少公园灌溉用水的需求,以适应炎热干燥的气候。
SURGE不会产生温室气体-或其它任何类型实体及气媒废弃物的排放。结构体系由可回收,可再生的材料组成,并在尽可能的条件下选择低交通运输影响的本地材料。钢结构由回收再利用的钢棒料焊接成所需形状,而且为可以被清洁的销毁而设计。PVC板可被生物降解并回收再利用。钢索在当地可以供应且运输便利。单晶硅光伏玻璃面板、PVC板和织物在当地很容易获取到。织物可用回收的塑料比如饮水瓶与容器之类制成,降低废弃物和垃圾填埋量。
由于场地位于人流量密集区域,公园的压电路面铺装应当提供简洁的建构与回收利用的方法。压电路面由铝、聚丙烯、和钢制成,这些材料在当地建筑市场上很容易得到。如果一组发电铺装设备损坏,可以方便的对其进行维护。压电设备可以被回收再利用。
An integral part of the design process was figuring out a way to conceptualize an installation that could harness energy but cause minimal disturbance to the site. Because the site is not an environmentally sensitive habitat area, large scale installations can be built on the sandy soil of the site by applying independent foundations for each column to ensure structural stability.
The unit itself captures light and winds, connected as a light-wind penetrating shelter that filters violent sunlight, meanwhile enhance air movement, channeling pleasant breeze in the site, reduce water demand for irrigation of the park, which is suited to a hot and dry climate.
SURGE does not produce emissions – greenhouse or otherwise – nor any physical or airborne waste products. The structure is composed of recycled and renewable materials and, whenever possible, local materials with low transit impact. ------The steel structure is composed of recycled steel bar stock welded into custom shapes and is designed for clean deconstruction. PVC boards are biodegradable and can be recycled. Steel cable is locally available and easy to transport. Monocrystalline silicon PV glass panels, PVC boards, and fabrics are distributed locally. The fabric can be made from recycled plastics such as water bottles and containers, reducing the amount of waste and landfills.
Due to the site is located in a crowded area, the piezoelectric pavement of the park should provide easy construction and recyclability. The device is made of aluminum, polypropylene, and steel which is easily accessible in the local building market. The device offers maintainability so that if a power-generation pavement is damaged, the device can be recycled.
PART 2
INGENUITY & BUILDABILITY | 独创性与可建造
SURGE回应当地气候与文化,平衡美学、经济与安全。长宽高为300m*70m*45m,平均净空高度为25米,SURGE覆盖场地19600 m²(投影面积)。主体结构由相同的能源收集单元彼此连接成链,降低成本与施工难度,并且易于产生空间和光线的变化。单元最大化收集来自各个方向的能源。透明材料使得大尺度投影的装置体量感更轻。超细柱提供了可靠的结构支撑以及通透的视野,使得自然通风和人的自由活动成为可能。
使用尖端并已经初步市场化的能源技术,结合工程学的创新突破,SURGE通过高度整体化的设计,最大化利用自然能源,收集太阳能、风能与人工动能,每年产出9,582,345MWh的清洁能源。
SURGE responses to local climate and culture, while balancing aesthetics, economy, and safety. With the size of 300m*70m*45m(average high clearance 25m), SURGE covers the site with 19600m² projected area. The main shelter is composed of identical energy harvesting units interconnected in chains, which is low cost, simple in construction, and also adaptable to variations in space and light. The unit maximizes the collection of energy in both upward and downward directions. Transparency in the material makes this large scale shading sculpture feel lighter. Ultra-fine columns provide reliable support and unobstructed viewing, make natural ventilation and people's free activities possible.
Applying cutting-edge and preliminary marketable energy technologies, combined with innovative breakthroughs in engineering, SURGE maximizes the collection of natural energy, collecting both solar, wind and human power by highly integrated design, generates 9,582,345MWh clean energy annually.
Basic Structure and Mechanism of SURGE | 结构与机制
能源收集单元尺寸16.6m*6.6m*2.6m,每个单元由一套树杈状柱子支撑,重力汇集到连接在直径30cm的超细柱的球状单元上。所有球状节点由直径1cm的钢索连接。电缆线在结构空腔内部传导到位于地下的电力管理设备中。由单元链竖向错动形成的缝隙起到了光线传递、通风以及风压平衡的作用。
Energy harvesting unit is sized 16.6m*6.6m*2.6m, each unit is supported by a set of branching columns, with gravity converging on a spherical joint which is attached to the ultra-fine column with a diameter of 30cm. The spherical joints are connected by steel cables with a diameter of 1cm. Cables are inside the structural cavity and are conducted into the power management box underground. The gap formed by chains vertical swing plays the role of light transmission, ventilation, and wind pressure balance.
1.Spherical Solar Tech | 球状光伏
Sphelar® BITV系列产品相比传统太阳能收集设备可以提供更多的产出,产能效率也更高。在水平向装置和需要大面积视觉通透的情况下表现优秀。
Sphelar® BITV series yield more energy output and have higher efficiency than conventional solars, with excellent performance in the case of horizontal installation and high see-throughness.
以晶体硅球为基础,Sphelar®模组产出更多的累积能源。在实际应用中,不仅是光电能转化效率,特定时间内球状体能够吸收多少入射光线也非常重要。因相较于传统光伏较少依赖热量与部分阴影遮蔽等因素,Sphelar®模组将是更实用的太阳能应用方式。
Based on crystalline silicon balls, Sphelar® module yields more in cumulative energy. Not only the photoelectric conversion efficiency but also how much incoming light the cells can absorb during a certain period is important in practical use. What is more, Sphelar® module is more practical solar since it is supposed to be less dependent on heat and partial shadowing than conventional solars.
2.Triboelectric Nanogenerator (TENG) | 摩擦纳米发电机
摩擦纳米发电机通过风力拍打发电。
由于流体连续性理论和伯努利定理[1]的存在,每个刚性襟翼单元的上表面都是弯曲的,在强风后会受到上行风压的影响。当向上的力超过重力时,挡板将被向上提起。此时,由于风压不均匀,风会迅速进入襟翼板的下表面,且襟翼板会掉落。因此,在风速超过一定阈值的情况下,襟翼板可以实现快速、周期性的襟翼运动。
对于松软的柔性襟翼单元,织物在风的作用下会反复拍打PVC上层[2]。
在拍打过程中,根据摩擦电纳米发电机的基本理论[3],具有不同电子增益和损耗能力的材料在接触和分离后会产生电位差。因此,我们的设备可以稳定地收集风能和太阳能转换产生的电能。
TENG obtains power by wind-driven flapping.
The upper surface of each rigid flapping unit is curved and will be subject to upward wind pressure after strong winds due to the theory of fluid continuity and Bernoulli's theorem[1]. When the upward force exceeds the gravity, the slapper will be lifted upward. At this time, due to the uneven wind pressure, the wind will quickly enter the lower surface of the flapping plate, and the flapping plate will fall. As a result, the flapping plate can perform a quick and periodic flap under the wind speed exceeding a certain threshold.
For the loose flexible flapping unit, the fabric will repeatedly flap the upper layer of PVC under the action of wind[2].
In the process of flapping, according to the basic theory of triboelectric nanogenerator[3], materials with different electron gain and loss abilities can generate potential difference after contact and separation. As a result, our device can steadily collect the electricity generated by the conversion of wind and solar energy.
3. Piezoelectric Pavement | 压电路面铺装
压电材料以单元的形式嵌入到路面中,每个单元由衬底连接。同时,在机组底部嵌入橡胶垫,减少损坏,保证谐振频率。作为能量的补充,压电材料在像场地这样人口密集的地区,结合模数化的路面设计,工作得非常完美。
The piezoelectric material is embedded in the pavement in the form of cells, each of which is connected by a substrate. At the same time, a rubber pad is embedded in the bottom of the unit to reduce damage and ensure resonance frequency. As a supplement of energy, piezoelectric works perfectly in a densely populated area like the site, combined with modulated pavement design.
4. Ultra-fine Column | 超细柱
“张拉整体”的力学原理应用在柱的压缩,将传统柱截面上的单力分解为张拉和压缩。两个方向力的平衡为抵抗柱的变形提供了额外的帮助,超过了欧拉临界力的极限,形成了一个荷载大、截面尺寸小的超细柱。
Apply the mechanical principle of "Tensegrity" to the compression of a column, and decompose the single force on the cross-section of a traditional column into tension and compression. The balance of forces in the two directions provided extra help to resist the deformation of the column and exceeded the limit of the critical force of Euler to form an ultra-fine column with a heavy load and a small section size.
Capacity & Cost Estimation | 产能与成本计算
1. Device for wind energy 风能装置
对于接触式分离式摩擦纳米发电机,通过分析其电容变化,求解常微分方程,得到如下方程:
For the contact separation type friction nano-generator, by analyzing its capacitance change and solving the ordinary differential equation, the following equation can be obtained:
在σ-surface tribo-charge密度, S-areal介质的大小,d 0有效介电层的厚度,ε0-vacuum介电常数,x (t)——板块之间距离。
为了简化模型,我们使用相似的工作[4]来估计我们的设备在理想条件下的生产率,得到每平方米刚性拍打功率为2.86W/m2,柔性拍打功率为2.88 W/m2。
Where σ-surface tribo-charge density, S-areal size of the dielectric, d 0 -effective thickness of the dielectric layer, ε 0-vacuum permittivity, x(t)-distance between plates.
To simplify the model, we use similar work[4] to estimate our device productivity under ideal conditions and obtain the rigid slapping power per square meter is 2.86W/m2, the flexible slapping power is 2.88 W/m2.
2. Device for solar energy 太阳能装置
对于光伏电池板,我们使用的是球状光伏的BIPV系列,其峰值功率为每平方米24.6w[5]。
For photovoltaic panels, we use spherical power's BIPV series with a peak power of 24.6w per square meter[5].
3. Piezoelectric Pavement 压电铺装
对于压电铺装,根据不同连接方式的各种理论计算方法,我们团队在本项目中选择了一种[6]。串联换能器的理论计算公式如下:
For piezoelectric pavement according to various theoretical calculation methods for different connection modes and our team choose one in this project[6]. The theoretical calculation formula of transducers in series is shown as follows.
Pos-output电源在系列中,并行Pop-output电源,d33-压电系数, Fm-acting负载,ω-acting频率,在传感器并联或串联的数量。h-transducers厚度。A-transducers区域。ε_33 ^ T-dielectric常数。R-load阻力。
在荷载为0.7MPa,行人接触频率为15hz的情况下,可以计算出压电路面每平方米的功率为2.4w。
where Pos-output power in series, Pop-output power in parallel, d33-piezoelectric coefficient, Fm-acting load, -acting frequency, n-the number of transducers in parallel or series. h-transducers thickness. A-transducers area. ε_33 ^ T -dielectric constant. R-load resistance.
Under the condition that loading is 0.7MPa and pedestrian contact frequency is 15hz, it can be calculated that the power of piezoelectric pavement per square meter is 2.4w.
4. Integrative Computation 综合计算
考虑到拍板的脆性、整体承载和局部风势,我们将风速阈值限制在6m/s,拍板频率估计为1hz,襟翼升力系数估计为1.5。因此,可以获得理想的总功率303868 w (wp)。
After considering the brittleness of the flapping plate, overall load-bearing and local wind conditions, we limited the windspeed threshold to 6m/s and estimated the slapping frequency to be 1hz, while lift coefficient of the wing is estimated as 1.5. Thus, the total ideal power can be obtained as 303868w(wp).
考虑当地风能与太阳能环境,在光照条件下,Sphelar®类似产品的转化效率为12.7%。可以看出,当地的太阳能环境并没有超过光伏电池板的输出极限,因此可以用转换效率来估计整体产出。
机场和海滨公路两个测量点的平均太阳辐射量为69550wh。因此,等效功率为2.45w。
对于刚性拍打模型,风速阈值为6m/s,不受风向影响。根据风玫瑰数据,风速超过6m/s约占1/6。
同时,根据当地风速资料,平均风速为13.55km/h(约3.76m/s)。因此,可以根据平均风速来估计柔性拍打模型。
Considering the local wind and solar environment:
Under sunlight, the conversion efficiency of similar products of Sphelar® is 12.7%. It can be known that the local solar energy environment does not exceed the output limit of photovoltaic panels, so the overall productivity can be estimated with the conversion efficiency.
The average amount of solar radiation in the airport and the seaside road is 69550wh. Thus, the equivalent power is 2.45w.
For the rigid flapping model, the windspeed threshold of operation is 6m/s, which does not depend on the wind direction. According to the wind rose, the wind speed over 6m/s accounts for about 1/6.
Meanwhile, according to local wind speed information, the average wind speed is 13.55km/h (about3.76m/s). Therefore, the flexible flapping model can be estimated according to the average wind speed.
为了模拟我们的设计在当地环境下的表现,我们的团队结合了马斯达尔市的风能、太阳能和人流(估计值),估算出每年和每月的生产能力,并进行统计。研究结果表明,摩擦纳米发电机结合SURGE的高集成度设计,具有卓越的的风能收集性能和潜力。
To simulate the performance of our design in the local environment, our team combined the wind, solar energy and the flow of people (estimated value) of Masdar city to estimate the annual and monthly production capacity and make statistics as shown in the table above. It shows that TENG has excellent performance and potential in wind energy collection combined with SURGE's highly integrated design.
5. Cost Estimation 成本估算
为了满足主办方每瓦装机容量不超过20美元的要求,需要获取阿布扎比当地一些主要的材料/人力价格的资料。以下是Turner & Townsend基于2017年调查得出的概念估计(粗略的数量级)。从那时起可能在这一估计水平的平均幅度之内有所增加,个别材料会根据全球价格做轻微调整。
To meet the requirement of not exceed $20 USD per watt of installed capacity, prices of some main materials/activities in Abu Dhabi is needed. Here is a conceptual estimate (rough order of magnitude) based on the survey in 2017 by Turner & Townsend. The escalation from that time is probably within the margin of averages for this level of estimation. Some materials are adjusted up slightly according to worldwide prices.
Power Management | 能源管理
接下来是发电系统的电信号处理和储能过程。由于TENG和压电铺装产生的电信号的复杂性,使得信号调制在基于信号的电路中并不方便。因此,在系统中,我们使用交流/直流整流器将不同频率的交流电转换成直流电,然后使用直流/交流逆变器将直流电转换成电网所需电压和频率的交流电。此外,为了保证电力系统的稳定性,我们在发电系统、功率转换和入网功率三部分分别设置了传感器和控制单元。太阳能、风能、人工动能三部分的传感器均由统一的控制中心管理。因此,我们的电力管理系统将能够将所产生的电力集成到电网中,并可以及时有效地处理各种异常情况。
What follows is the electrical signal processing and energy storage process of the power generation system. Due to the complexity of electrical signals generated by TENG and piezoelectric pavements, signal modulation in signal-based circuits is not convenient. So in the system, we use ac/dc rectifier to convert an alternating current of different frequencies to direct current and then use dc/ac inverter to convert direct current to alternating current with voltage and frequency required by the grid. Besides, to ensure the stability of the power system, we have set up sensors and control units respectively in the three parts of the power generation system, power conversion and power inflow into the grid. Solar energy, wind energy, and human energy sensors are managed by an integrated control center. As a result, our power management system will be able to integrate the generated electricity into the grid and effectively deal with various abnormal situations.
PART 3
FUTURE HORIZONS | 未来展望
大洪水毁灭人类的警示存在于众多宗教神话中。在当代语境下,人类面临着一个身体和精神上的冲突时刻:消费主义、技术主义的盲目乐观与社会生态系统的对立。SURGE营造了一种紧张对峙感的平衡,与此同时创造了一个可以思考这种社会生态系统的辩证关系的空间。对冲突的触摸与感知,或许将成为人类用心灵和思想想象美丽新视界的驱动力量。
The apocalypse of floods destroy humanity exists in many religious myths. In the contemporary context, humanity is confronted with a physical and mental moment of conflict: the blind optimism of consumerism and technicism against socio-ecosystems. SURGE creates a tensioned sense of balance, a manifesto of this dialectical relationship. The touch and perception of conflict may be the driving force, to imagine with heart and mind, of brave new horizons.
References | 参考文献
[1] Munson BR, Okiishi T H, Huebsch WW, et al. Fluid mechanics[M]. Singapore: Wiley, 2013.
[2] Wang S, MuX, Wang X, et al. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy[J]. ACS Nano, 2015, 9(10): 9554-9563.
[3] Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy & environmental science, 2013, 6(12): 3576-3583.
[4] Yang B, Zeng W, Peng Z H, et al. A fully verified theoretical analysis of contact‐mode triboelectric nanogenerators as a wearable power source[J]. Advanced Energy Materials,2016, 6(16):1600505.
[5] Nakata J.Spherical cells promise to expand applications for solar power[J]. Asia Electronics Industry (AEI), 2001, 2001: 44.
[6] Wang C, Zhao J, Li Q, et al. Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement[J]. Applied Energy, 2018,229: 18-30.[1]
Special Thanks to | 特别致谢
中科院纳米能源与系统研究所
深圳市建筑设计研究总院北京分院结构所
Beijing Institute of Nano-energy and Nano-systems, Chinese Academy of Sciences
Shenzhen General Institute of Architectural Design and Research Co., Ltd (Beijing Branch) Institute of Structural Design
项目类型:公共艺术装置
设计时间:2019年5月
项目地点:阿联酋,阿布扎比
设计师:孙鸣飞,原航,晁盛宇
Type: Public land art installation
Design time: MAY, 2019
Location: Abu Dhabi, UAE
Designer: Mingfei Sun, Hang Yuan, Shengyu Chao
UDL诚邀各种有趣经历的朋友进行投稿。
有兴趣的朋友欢迎添加小编微信yzx1180进行联系。
末尾跟上公众号旧闻链接,欢迎了解更多其他相关资讯。
涟漪菜市场:水滴落入安宁的水面——入围安宁金方菜市场设计竞赛
同一个屋檐下:塞内加尔KAIRA LOORO“和平馆”国际建筑竞赛提案
O'donnell + Tuomey赢得利物浦大学建筑学院扩建竞赛
《人民日报》批评中国建筑缺乏文化自信,评论里的建筑师们坐不住了......
走向网红建筑Vers une architecture instacélèbre
言论自由的时代,我们愉快地讨论设计,看情怀是如何毁掉一座建筑