查看原文
其他

浙大郭兴忠、陆俊 & 温大袁一斐AEM:抑制富锂锰NCM正极八面体坍缩以抑制结构转变

Energist 能源学人 2022-09-24
高能量密度的锂离子电池主要受限于正极材料的放电比容量和放电电压,富锂锰基镍钴锰三元氧化物(Li1.2Mn0.54Co0.13Ni0.13O2,LMRNCM)正极材料由于具有高能量密度(~1000 Wh kg-1)和低成本的优点而被广泛关注。但高电压(≥4.4 V)时晶格氧的析出、过渡金属离子-晶格氧八面体(TMO6)的变形以及正极-电解质界面相的不断形成等因素使得LMRNCM正极在充放电循环中容量、电压衰减,能量密度持续下降,制约了此类正极材料的应用。

【工作介绍】
近日,浙江大学郭兴忠教授、陆俊教授与温州大学袁一斐教授合作设计了一种利用聚丙烯腈(PAN)作为粘结剂的表面处理策略以稳定LMRNCM正极的循环稳定性。实验和DFT模拟表明,在不稳定的TMO6中,PAN的碳氮三键与TM离子之间的配位键相互作用是其优异性能的主要原因。这种相互作用增加了TM离子不可逆迁移的能量势垒,并确保PAN紧密地附着在LMRNCM颗粒上,从而抑制TM离子迁移、缓解电解质腐蚀并保证良好的粘结性。相关成果以“Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation”为题,发表在国际权威期刊Advanced Energy Materials上,第一作者为博士生徐宙。

【内容表述】
富锂锰基镍钴锰三元正极材料(LMRNCM)的放电电压和放电比容量在电循环中严重衰减主要是由晶格氧析出后,TM离子不可逆迁移引起的。由于LMRNCM结构变化多始于颗粒表面,因而在常规包覆基础上发展以化学键相互作用力(包覆层-正极材料)稳定表面结构是必要的。作者利用粘结剂PAN的碳氮三键与不稳定的TM离子形成配位键相互作用力,以提高TM离子不可逆迁移的能量势垒,稳定循环中的层状结构。

与聚偏氟乙烯(PVDF)涂层LMRNCM样品(LMRNCM-PVDF)相比,PAN在长期搅拌后更均匀地粘附在LMRNCM颗粒上(图1a,b)。PAN涂层不仅相对均匀,厚度约为2-4 nm,而且能与LMRNCM颗粒无缝粘附(图1c,d)。在XRD中(图1e),两个样品表现出相同的特征,对应α-NaFeO2结构。(003)和(104)峰的强度比(I003/I104)被认为反映了LMRNCM样品的阳离子有序程度。LMRNCM-PVDF和LMRNCM-PAN样品表现出相似的I003/I104比值,分别为1.273和1.278。反映表面结构的拉曼光谱显示,两个样品都具有典型的、强烈的LMRNCM层状结构峰(图1f)。采用了X射线光电子能谱(XPS)探测元素价态。与晶格氧相关的O 1s谱中(图1g),两个样品的峰(O-M)都强烈,表明晶格氧没有受到影响。根据Mn 3s谱计算出LMRNCM-PVDF和LMRNCM-PAN样品的平均氧化态分别为+3.92和+3.94 (图1h),Mn 2p谱也表明Mn的价态几乎没有受到影响(图1i)。在N 1s谱中(图1j),LMRNCM-PAN样品有明显的峰,进一步说明PAN的存在。
图1. 原始样品的形貌和结构表征。

图2a中,由于紧密包覆的PAN层抑制了晶格氧析出和结构演变,LMRNCM-PAN具有更高的放电比容量(282.2 mAh g-1)和初始库伦效率(ICE,87.26%)。在电流密度为100 mA g-1时,由于TM离子被配位键相互作用稳定,LMRNCM-PAN样品的电压和容量衰减在300次循环中得到有效缓解(图2b,c)。图2d量化了反映LMRNCM电极的电化学稳定性,相较于LMRNCM-PVDF电极,LMRNCM-PAN电极的比容量、平均放电电压和能量密度稳定性明显提高。在电流密度为1000 mA g-1时,LMRNCM-PAN样品的比容量能够达到168.8 mAh g-1(图2e)。使用不同扫速CV和Randles-Sevcik方程计算Li+扩散系数(DLi),在充/放电过程中,DLi LMRNCM-PAN/DLi LMRNCM-PVDF的比值分别为1.593和2.968(图2f)。
图2. LMRNCM-PAN电极电化学性能的提高。

为了揭示LMRNCM-PAN样品的改性机理,采用原位XRD检测LMRNCM-PAN在锂化和脱锂过程中的结构演变。在前两圈循环中,LMRNCM-PVDF和LMRNCM-PAN样品在典型角度上保持相似的趋势(图3a,b)。不同的是,LMRNCM-PAN的衍射峰强度高于LMRNCM-PVDF,特别是在充放电结束的位点。强烈的峰表明Li+在脱出和回嵌过程中结晶性保持良好,晶格参数的变化具有更强的可逆性。对每个XRD进行拟合以计算晶胞参数(a、c、体积)的变化,LMRNCM-PVDF(0.0204、0.1442 Å、2.4540 Å3)比LMRNCM-PAN(0.0160、0.1320 Å、2.0556 Å3)的晶格参数的变化更剧烈。
图3. 原位XRD检测LMRNCM-PVDF和LMRNCM-PAN电极的结构演变。

在所选循环圈数的XRD中,LMRNCM-PAN具有更高的I003/I104值(图4a)。LMRNCM-PAN值越高,表示阳离子混合程度越小,层结构保持越好。由于XRD反映整个颗粒的结构信息,难以表征表面的尖晶石,利用拉曼光谱表征LMRNCM-PAN颗粒的表面结构信息(图4b)。在所选循环圈数的拉曼光谱中,配位键相互作用显著减缓了LMRNCM-PAN颗粒表面尖晶石相的形成速度,尤其是在50圈后。采用XPS研究了Mn和O经过300次循环后的价态。Mn 3s两峰的结合能差(ΔE3s)被认为是反映Mn价态的一个指标(图4c),LMRNCM-PAN和LMRNCM-PVDF的ΔE3s分别升至4.89和5.14 eV。通过比较Mn 2p谱中的Mn4+和Mn3+峰也得出了类似的结论(图4d)。O 1s谱中,关于M-O峰,LMRNCM-PAN明显高于LMRNCM-PVDF样品(图4e),关于副反应产物峰,LMRNCM-PAN低于LMRNCM-PVDF样品。这说明配位键相互作用抑制了TMO6八面体的坍塌并缓解晶格氧与电解质的副反应。
图4. LMRNCM-PVDF和LMRNCM-PAN电极的结构和价态转变。

采用电子显微镜直观地对所选循环圈数后的电极进行了表征。在HRTEM和相应的快速傅里叶变换(FFT)中,LMRNCM-PVDF颗粒在首圈循环后即出现晶格条纹畸变和尖晶石相斑点(图5a)。LMRNCM-PAN颗粒仍然保持有序的晶格条纹(图5d)。50次循环后,LMRNCM-PAN样品的FFT中出现尖晶石样相斑点(图5e),在LMRNCM-PVDF中难以发现层状结构的斑点(图5b)。在选区电子衍射中(SAED),LMRNCM-PVDF样品存在明显的尖晶石相衍射斑点(虚线标记),而LMRNCMPAN中尖晶石相衍射斑极弱(图5c,f),证明了配位键相互作用对TM离子不可逆迁移的抑制。300次循环后,LMRNCM-PVDF颗粒表面尖晶石相厚度加深(图5g),而LMRNCM-PAN颗粒仍存在大面积扭曲的层状结构(图5i)。采用EDS-HAADF对LMRNCM-PVDF样品进行线扫描,边缘Mn含量低于化学计量比(67.5%),相应的Ni含量高于化学计量比(16.25%),颗粒内部4.6 nm处,Mn和Ni元素的含量才接近化学计量比(图5h),而LMRNCM-PAN颗粒边缘Mn和Ni的含量与化学计量比(图5j)几乎相同。300次循环后,FESEM显示LMRNCM-PVDF电极上有厚CEI层(图5k),LMRNCM-PAN颗粒表面仅有CEI薄层(图5l)。碳氮三键与TM离子的相互作用使PAN的粘附性能宏优于PVDF,在经过300次循环后LMRNCM-PAN颗粒仍然紧紧地附着在铝箔集电流片上(图5m),而LMRNCM-PVDF颗粒有从铝箔上脱落的趋势(图5n)。
图5. LMRNCM-PVDF和LMRNCM-PAN样品在循环过程中的结构和形貌演变。

为了进一步了解配位键对TM离子不可逆迁移的抑制作用,采用密度泛函理论(DFT)模拟了碳氮三键对TM离子迁移的能量势垒的影响。在图6a,b中,涂覆在LMRNCM颗粒上的碳氮三键与TM离子形成配位键,阻碍了Mn离子的不可逆迁移。图6c中,LMRNCM-PAN中Mn离子迁移到TM层空位的能垒(+3.59 eV)比LMRNCM-PVDF(+2.58 eV)高,高能垒是由额外的配位键引起的。高压下LMRNCM-PVDF和LMRNCM-PAN样品Ni离子迁移的结构模型如图6d,e所示。由于Li层中存在大量Li+空位,LMRNCM-PVDF样品中Ni离子的层间迁移几乎没有受到阻碍(图6f中黑线)。受配位键的影响,LMRNCM-PAN样品中Ni离子迁移的能垒增大到+2.28 eV(图6f中红线)。因此,附加的表面配位键相互作用缓解了TMO6八面体的坍塌,提高了循环稳定性。
图6. Mn、Ni离子迁移模型及能垒计算。

作为一种简单有效的改性方式,利用化学键相互作用力可以提高LMRNCM正极的循环稳定性(比容量、放电平均电压、能量密度),且在ICE和倍率比容量方面也表现出更好的性能。LMRNCM-PAN样品性能提高的根本原因是碳氮三键与TM离子之间配位键相互作用力的存在。首先,增加了TM离子迁移的能垒,阻碍了TM离子向Li空位的不可逆迁移。从而提高了Li+和晶格O的可逆性和TMO6八面体的稳定性。其次,相互作用力使PAN均匀、紧密地粘附在LMRNCM颗粒上,抑制了界面副反应,稳定了颗粒界面。最后,这种相互作用保证了PAN良好的附着力,使LMRNCM颗粒紧密地粘附在铝箔集电极上,进一步提高了LMRNCM-PAN正极的电化学性能。
图7. PAN辅助界面改性及配位键作用图解。

Zhou Xu, Xingzhong Guo*, JunZhang Wang, Yifei Yuan*, Qing Sun, Rui Tian, Hui Yang, and Jun Lu*, Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation, Adv. Energy Mater. (2022), DOI:10.1002/aenm.202201323

作者简介
郭兴忠,男,浙江大学教授,博士生导师,兼任中国硅酸盐学会理事,中硅会溶胶凝胶分会常务理事、秘书长,杭州市硅酸盐学会理事长,中国稀土学会光电材料与器件专业委员会委员。研究方向为多孔电池材料的制备机理及应用开发,成功实现了阶层多孔过渡金属负极材氧化物负极材料、多孔硅及硅碳负极材料的可控制备。发表学术论文200多篇,1篇入选2011年中国百篇最具影响国内论文,1篇入选2016年领跑者5000中国科技科技期刊顶尖学术论文,获授权发明专利80余项,通过省级技术鉴定或验收10项,参与出版学术专著2部,多项科研成果在企业实现产业化应用;获国家科学技术进步奖二等奖1项、浙江省科学技术奖一等奖、二等奖5项、中国石油和化学工业协会技术发明二等奖2项、第九届中国硅酸盐学会青年科技奖等荣誉称号。

陆俊,男,1977年4月出生,中国籍,浙江省湖州人,浙江大学求是讲席教授。中国科学技术大学学士(2000年),美国犹他大学博士(2008年)。任职于美国阿贡国家实验室(2009.10-2022.06)。研究方向为电化学能量储存与转换。在国际知名期刊上发表论文500余篇,获得专利授权20余项,包括Science、Nature(5篇)及其子刊50余篇(其中10篇Nat. Energy、3篇Nat. Nanotech.、1篇Nat. Catal.、2篇Nat. Sustain.、30余篇Nat. Commun.),论文总引用数>45000次,热点论文20余篇,ESI高被引论文100余篇,H指数超过115,2018-2021连续四年高被引科学家。兼任《ACS Applied Materials & Interfaces》期刊副主编、Research副主编,电化学能源科学院(IAOEES)副主席和理事会成员。

曾获得荣获电化学能源存储与转换领域的重要奖励20余项,包括全球百大科技研发奖(R & D 100, 2019)、国际电池材料协会杰出研究奖(IBA, 2022)、美国电化学会电池分会技术奖(2022)、美国化学会能源与燃料部电化学储能杰出研究员奖(2022)、美国化学会能源与燃料部电化学储能青年研究员奖(2019)、巴斯夫和大众汽车联合颁发的国际电化学科学奖(2016)、国际电化学能源科学院电化学能源杰出贡献奖(2016)等。

袁一斐,温州大学瓯江特聘教授,《麻省理工科技评论》—“35岁以下35人”(亚太)、中国新锐科技人物、美国电化学协会“K.M. Abraham Travel Award”。研究方向为新能源材料的开发和能源转化与存储关键反应机理的显微溯源研究,成果发表于Nat. Sustain., Nat. Energy等期刊,h因子52;参与撰写电子显微学专著1部;担任国际学术期刊Crystals编委,Carbon Energy青年编委,Nat. Energy 等期刊审稿人。

课题组主页:碳+能源材料微观储能研究课题组
(https://www.x-mol.com/groups/yuan-wzu)

温州大学首篇Nature Sustainability!原子水平揭示水系电池新充放电机制

2022-08-09

孟颖教授最新刊文:可控双孪晶界缓解层状氧化物各向异性,助力长寿命锂离子电池

2022-08-09

厦大王鸣生AEM封面:聚集与抗聚集——转化类储钾负极材料失效机理与解决策略

2022-08-09

吉林师大Advanced Materials:Co(TFSI)2改性电解液自源形成CoO纳米点催化剂助力高性能锂氧气电池研究

2022-08-09

电沉积动力学调控抑制锂枝晶生长

2022-08-09

氮掺杂中空蜂窝状碳球负载α-MoC1-x电催化剂助力高性能室温钠硫电池

2022-08-09

顶刊攻略:固态锂金属电池负极保护的最新进展

2022-08-08

利用深度迁移学习实时个性化地预测锂电池健康状态

2022-08-08

硅负极表面高效构建稳定SEI膜的新思路

2022-08-08

原子尺度洞察非共价相互作用在电催化析氢反应中的作用

2022-08-08


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存