Ageing Res Rev 综述︱肠道微生物组生态紊乱与帕金森病之间的新见解:致病性和临床相关性
帕金森病(Parkinson’sdisease,PD)是一种复杂的神经退行性疾病,以黑质致密部(SNpc)多巴胺能神经元变性和细胞内路易小体中错误折叠的α-突触核蛋白(α-Syn)聚集为特征[1]。目前PD的诊断标准是运动障碍,但超过80%的帕金森病患者在运动障碍出现前15-20年有胃肠道障碍的表现[2]。神经病理学研究显示PD的肠神经系统(ENS)早期出现α-Syn聚集,进一步暗示了胃肠道及其与大脑的神经连接在PD发病中的作用[3,4]。肠-脑轴在稳态维持中备受关注[5],而肠道微生物在肠-脑轴调节中扮演关键角色[6]。因此,微生物-肠-脑轴在PD与肠道微生物群间的作用引起了关注[7]。此外,肠道微生物群能够影响个体对药物的反应特定性,药物也作用于肠道微生物群[8]。因而,了解肠道微生物群与PD的相关性,再利用微生物-肠-脑轴调节肠道微生物群,将达到开发新治疗方法和改善药物有效性的目的。
近日,山东大学微生物技术研究院刘双江教授团队在Ageing Research Reviews上发表了名为“Emerging insights between gut microbiome dysbiosis and Parkinson’s disease:Pathogenic and clinical relevance”的最新综述文章。该综述阐述了肠道微生物群失调在PD发病机制中的最新研究进展及其与PD非运动症状和运动症状的临床相关性,并讨论了肠道微生物群与PD药物之间的复杂相互作用,为开发PD诊断标志物和治疗方案提供了新思路。
传统意义上,PD的临床表现主要为运动障碍。直到1900年,关于PD中胃肠道和脑之间复杂相互作用的证据才得到澄清[9-11]。近年来,相关研究也支持了胃肠道紊乱在PD中的作用[4,12]。PD患者经历前驱性胃肠道功能障碍,代表PD的早期形式,早于运动症状[13]。一般认为α-Syn病理存在于SNpc,但其实α-Syn在外周自主神经系统中十分普遍[14-15],尤其是PD患者的胃肠道中。胃肠道中的α-Syn通过迷走神经运输到大脑,可能会诱导PD,但α-Syn如何形成并传播的机制还需更多研究来证明。肠道中存在的功能性淀粉样蛋白纤维Curli,是细胞外基质的一部分,肠道生物膜主要成分,也存在于细菌生物膜中。通常认为大肠杆菌表达Curli[16],并能够促进肠和脑中的α-Syn病理学,加速宿主神经变性[17,18],但其他含Curli的细菌仍需进一步鉴定。
开创性研究表明,肠道微生物组失调可以作为PD患者的潜在生物标志物。众多研究已提供PD中肠道微生物紊乱的证据,PD患者肠道微生物多样性表现出明显差异,PD模型也出现肠道微生物组的改变。但个体差异、疾病进展、样品制备等内外因素的影响无法排除,就提示针对PD患者应实行更严格、标准化的研究,对肠道微生物使用宏基因组和多组学方法深入研究,在此基础上更清晰地阐明肠道微生物组改变与PD发病机制间的关系。
PD患者中肠道微生物代谢物的改变有助于调节宿主稳态和慢性神经炎症。乙酸、丙酸、丁酸和戊酸等短链脂肪酸(SCFAs)可以调节能量代谢,参与递质的合成,缓解肠道炎症[19,20]。在大脑中,SCFAs调节小胶质细胞的成熟、神经营养因子的产生和炎症反应[21,22]。但SCFAs也可能在PD中发挥病理作用[23]。胆汁酸与其受体相互作用,抑制细胞凋亡、炎症和氧化应激[24]。肠道微生物群还可以调节递质的产生,如血清素、γ-氨基丁酸(GABA)和多巴胺,这些递质可以被运输到中枢神经系统,从而影响大脑功能。肠道中产生的H2通过抗炎和抗氧化特性影响微生物群和宿主。此外,硫化氢(H2S)的生理浓度还促进了海马的长时程增强效应(LTP),并调节神经元中Ca2+的流入或释放[25-27](图1)。
图1 肠道微生物代谢物在PD中的作用
(图源:Bi M,et al., Ageing Res Rev. 2022)
肠道微生物组失调与PD的非运动症状及运动症状密切相关。非运动症状中,胃肠道并发症与Dorea、Oscillospira和Ruminococcus丰度增加及Faecalibacterium、Roseburia丰度减少有关[28];特发性RBD可能与Haemophilus、Anaerotruncus丰度增加及Faecalicoccus、Victivallis丰度降低相关[29];焦虑和抑郁与Citrobacter rodentium和Campylobacter jejuni的增加及Lactobacillus rhamnosus和Bifidobacterium longum的减少相关[30-33]。此外,Anaerotruncus、Clostridium XIVa和Enterobacteriaceae的丰度增加与Lachnospiraceae、Prevotellaceae、Bacteroides fragilis、Clostridium leptum的丰度减少与PD的运动症状相关[34-38](图2)。虽然一些研究表明肠道微生物组失调在PD中的关键作用,但还未确定一个特定的微生物群作为这种疾病的预测标志物。在未来的研究中,需要考虑PD的持续时间和一些混杂因素。
图2 肠道微生物菌群失调对PD症状的影响
(图源:Bi M,et al., Ageing Res Rev. 2022)
肠道微生物组对PD药物的代谢有影响。多巴胺前体左旋多巴作为PD的主要治疗药物,它必须到达大脑才能发挥其关键作用,但微生物在外周也能够代谢左旋多巴,使得多巴胺在外周产生,降低了左旋多巴的有效性,还引起不必要的副作用[39]。FLZ是一种正在进行I期临床试验的新型PD药物,其主要代谢物M1在微生物作用下能够重新甲基化为FLZ[40-43],提示肠道微生物组很可能会影响FLZ的生物利用度和功效。
此外,一些PD临床药物也影响微生物特征。恩他卡朋与丙酸浓度呈负相关[44]。单胺氧化酶B(MAO-B)抑制剂和抗胆碱能药物与丁酸浓度有关[44]。儿茶酚-O-甲基转移酶(COMT)抑制剂与Enterobacteriaceae丰度的增加有关[45,46]。总而言之,解开肠道微生物群和PD药物代谢之间复杂的相互作用并不是一件容易的事。每种药物似乎都有与肠道微生物组相互作用的独特方式,很难得出一个共同的作用机制。在PD治疗中,改变肠道微生物组以提高药物的有效性或减少其副作用的前景有待进一步探讨。
人体肠道微生物组是一个复杂的生态,众多证据表明肠道微生物组通过连接外周和中枢神经系统的肠-脑轴参与PD,PD的非运动症状和运动症状间的联系也凸显了肠道微生物群及其代谢物在PD中的临床相关性,尽管确切机制不清楚。了解肠道微生物组与PD间的复杂作用将指导PD的临床治疗,有助于开发基于肠道微生物组的特定药物。
尽管如此,由于PD患者队列数量少、随访期短、测序方法多样以及饮食习惯、既往病史或药物的影响,PD的确切诊断仍难以达成共识。此外,目前对肠道微生物组的观察大多数集中于门和属水平,人类神经系统疾病的复杂性和模拟PD病理学动物模型局限性的存在也是一大障碍。
总之,肠道菌群与PD的相关性研究已被广泛报道,针对PD开发靶向肠道微生物及代谢物有光明的前景。
原文链接:https://doi.org/10.1016/j.arr.2022.101759
肠道微生物实验室主要开展肠道微生物的分离培养、生理代谢、遗传以及与宿主互作等。实验室学术带头人刘双江教授曾经获得国家杰出青年基金项目和中科院“百人计划”项目支持;做为主要参与者,发起并推动了“中国微生物组计划”,承担并完成了中国科学院微生物组计划重点部署项目(“中国微生物组计划”预研)。
欢迎扫码加入逻辑神经科学 文献学习3
群备注格式:姓名-单位-研究领域-学位/职称/称号/职位
【1】Cell Res︱郑慧/徐兴顺团队揭示抑郁症诱导的抗病毒免疫功能障碍的机制
【2】Mol Neurobiol︱徐凯彪/高亦博团队发现不同原因引起的新发难治性癫痫持续状态的潜在病理机制
【3】Mol Psychiatry︱庞志平/陈超/诺奖得主Thomas Südhof团队揭示孤独症风险突变获得性功能突触新机制
【4】PLOS Biol︱陆伟团队发现睡眠-觉醒周期动态调节海马抑制性突触可塑性
【5】J Neuroinflammation︱卓业鸿/苏文如团队揭示铁死亡可能是视网膜缺血-再灌注的损伤新机制和治疗新靶点
【6】PNAS︱钟毅课题组揭示Rac1-依赖的遗忘机制是情绪状态影响记忆表达的神经基础
【7】Cell Metab 综述︱曹旭团队评述骨内感知系统调控骨稳态及骨痛
【8】NAN︱苑林宏课题组揭示DHA干预对ApoE-/-和C57 WT小鼠脑脂质水平、脂肪酸转运体表达和Aβ代谢有不同影响
【9】Autophagy 综述︱李晓江团队评述线粒体自噬在体内和体外模型中的差异及研究进展
【10】HBM︱商慧芳课题组通过功能影像技术揭示帕金森病的运动进展标记物
优质科研培训课程推荐【1】第十届近红外训练营(线上:2022.11.30~12.20)【2】第九届脑电数据分析启航班(训练营:2022.11.23—12.24)欢迎加入“逻辑神经科学”【1】“ 逻辑神经科学 ”诚聘编辑/运营岗位 ( 在线办公)【2】人才招聘︱“ 逻辑神经科学 ”诚聘文章解读/撰写岗位 ( 网络兼职, 在线办公)参考文献(上下滑动阅读) [1] Araki, K., Yagi, N., Aoyama, K., et al., 2019. Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of alpha-synuclein. Proc. Natl. Acad. Sci. USA 116 (36), 17963–17969. https://doi.org/10.1073/pnas.1906124116.
[2] Camilleri, M., 2021. Gastrointestinal motility disorders in neurologic disease. J. Clin. Investig. 131 (4) https://doi.org/10.1172/JCI143771.
[3] Braak, H., de Vos, R.A., Bohl, J., et al., 2006. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396 (1), 67–72. https://doi.org/ 10.1016/j.neulet.2005.11.012.
[4] Braak, H., Del Tredici, K., Rub, U., et al., 2003a. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24 (2), 197–211. https://doi.org/ 10.1016/s0197-4580(02)00065-9.
[5] Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., et al., 2019. The microbiota-gut-brain axis. Physiol. Rev. 99 (4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018.
[6] Tan, A.H., Chong, C.W., Lim, S.Y., et al., 2021a. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89 (3), 546–559. https://doi.org/10.1002/ana.25982.
[7] Fang, P., Kazmi, S.A., Jameson, K.G., et al., 2020. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28 (2), 201–222. https://doi.org/ 10.1016/j.chom.2020.06.008.
[8] Weersma, R.K., Zhernakova, A., Fu, J., 2020. Interaction between drugs and the gut microbiome. Gut 69 (8), 1510–1519. https://doi.org/10.1136/gutjnl-2019-320204.
[9] Edwards, L., Quigley, E.M., Hofman, R., et al., 1993. Gastrointestinal symptoms in Parkinson disease: 18-month follow-up study. Mov. Disord. 8 (1), 83–86. https://doi. org/10.1002/mds.870080115.
[10] Wakabayashi, K., Takahashi, H., Takeda, S., et al., 1988. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 76 (3), 217–221. https://doi.org/10.1007/BF00687767.
[11] Wakabayashi, K., Takahashi, H., Ohama, E., et al., 1990. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79 (6), 581–583. https://doi.org/10.1007/BF00294234.
[12] Braak, H., Rub, U., Gai, W.P., et al., 2003b. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110 (5), 517–536. https://doi.org/10.1007/ s00702-002-0808-2.
[13] Travagli, R.A., Browning, K.N., Camilleri, M., 2020. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17 (11), 673–685. https://doi.org/10.1038/s41575-020-0339-z.
[14] Jellinger, K.A., 2012. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov. Disord. 27 (1), 8–30. https://doi.org/10.1002/ mds.23795.
[15] Olanow, C.W., 2012. A colonic biomarker of Parkinson’s disease. Mov. Disord. 27 (6), 674–676. https://doi.org/10.1002/mds.25067.
[16] Chapman, M.R., Robinson, L.S., Pinkner, J.S., et al., 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295 (5556), 851–855. https:// doi.org/10.1126/science.1067484.
[17] Wang, C., Lau, C.Y., Ma, F., et al., 2021. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc. Natl. Acad. Sci. USA 118 (34). https://doi.org/10.1073/pnas.2106504118.
[18] ampson, T.R., Challis, C., Jain, N., et al., 2020. A gut bacterial amyloid promotes alphasynuclein aggregation and motor impairment in mice. eLife 9. https://doi.org/ 10.7554/eLife.53111.
[19] arraufie, P., Martin-Gallausiaux, C., Lapaque, N., et al., 2018. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8 (1), 74.
[20] olhurst, G., Heffron, H., Lam, Y.S., et al., 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2), 364–371.
[21] Erny, D., Hrabe de Angelis, A.L., Jaitin, D., et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18 (7), 965–977.
[22] Macia, L., Tan, J., Vieira, A.T., et al., 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734
[23] Sampson, T.R., Debelius, J.W., Thron, T., et al., 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167 (6), 1469–1480.
[24] Wahlstrom, A., Sayin, S.I., Marschall, H.U., et al., 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24 (1), 41–50.
[25] Abe, K., Kimura, H., 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16 (3), 1066–1071.
[26] Kimura, H., 2000. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 267 (1), 129–133.
[27] Nagai, Y., Tsugane, M., Oka, J., et al., 2004. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 18 (3), 557–559.
[28] Cirstea, M.S., Yu, A.C., Golz, E., et al., 2020. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. 35 (7), 1208–1217.
[29] eintz-Buschart, A., Pandey, U., Wicke, T., et al., 2018. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder.
[30] Lyte, M., Li, W., Opitz, N., et al., 2006. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89 (3), 350–357.
[31] Goehler, L.E., Park, S.M., Opitz, N., et al., 2008. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 22 (3), 354–366
[32] Bravo, J.A., Forsythe, P., Chew, M.V., et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108 (38), 16050–16055.
[33] Bercik, P., Park, A.J., Sinclair, D., et al., 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23 (12), 1132–1139.
[34] Heintz-Buschart, A., Pandey, U., Wicke, T., et al., 2018. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33 (1), 88–98.
[35] Barichella, M., Severgnini, M., Cilia, R., et al., 2019. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34 (3), 396–405.
[36] Pietrucci, D., Cerroni, R., Unida, V., et al., 2019. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Park. Relat. Disord. 65, 124–130.
[37] Lin, C.H., Chen, C.C., Chiang, H.L., et al., 2019. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 16 (1), 129.
[38] Minato, T., Maeda, T., Fujisawa, Y., et al., 2017. Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLOS One 12 (11), e0187307.
[39] Maini Rekdal, V., Bess, E.N., Bisanz, J.E., et al., 2019. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364 (6445).
[40] Bao, X.Q., Kong, X.C., Qian, C., et al., 2012. FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson’s disease models. Neuroscience 202, 396–404.
[41] Tai, W., Ye, X., Bao, X., et al., 2013. Inhibition of Src tyrosine kinase activity by squamosamide derivative FLZ attenuates neuroinflammation in both in vivo and in vitro Parkinson’s disease models. Neuropharmacology 75, 201–212.
[42] Zhang, D., Zhang, J.J., Liu, G.T., 2007. The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells. Eur. J. Pharmacol. 561 (1–3), 1–6.
[43] Shang, J., Ma, S., Zang, C., et al., 2021. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson’s disease treatment. Acta Pharm. Sin. B 11 (5), 1213–1226.
[44] Shin, C., Lim, Y., Lim, H., et al., 2020. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov. Disord. 35 (6), 1021–1027.
[45] Hill-Burns, E.M., Debelius, J.W., Morton, J.T., et al., 2017. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32 (5), 739–749.
[46] Scheperjans, F., Aho, V., Pereira, P.A., et al., 2015. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30 (3), 350–358.
本文完
[1] Araki, K., Yagi, N., Aoyama, K., et al., 2019. Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of alpha-synuclein. Proc. Natl. Acad. Sci. USA 116 (36), 17963–17969. https://doi.org/10.1073/pnas.1906124116.
[2] Camilleri, M., 2021. Gastrointestinal motility disorders in neurologic disease. J. Clin. Investig. 131 (4) https://doi.org/10.1172/JCI143771.
[3] Braak, H., de Vos, R.A., Bohl, J., et al., 2006. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396 (1), 67–72. https://doi.org/ 10.1016/j.neulet.2005.11.012.
[4] Braak, H., Del Tredici, K., Rub, U., et al., 2003a. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24 (2), 197–211. https://doi.org/ 10.1016/s0197-4580(02)00065-9.
[5] Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., et al., 2019. The microbiota-gut-brain axis. Physiol. Rev. 99 (4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018.
[6] Tan, A.H., Chong, C.W., Lim, S.Y., et al., 2021a. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann. Neurol. 89 (3), 546–559. https://doi.org/10.1002/ana.25982.
[7] Fang, P., Kazmi, S.A., Jameson, K.G., et al., 2020. The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28 (2), 201–222. https://doi.org/ 10.1016/j.chom.2020.06.008.
[8] Weersma, R.K., Zhernakova, A., Fu, J., 2020. Interaction between drugs and the gut microbiome. Gut 69 (8), 1510–1519. https://doi.org/10.1136/gutjnl-2019-320204.
[9] Edwards, L., Quigley, E.M., Hofman, R., et al., 1993. Gastrointestinal symptoms in Parkinson disease: 18-month follow-up study. Mov. Disord. 8 (1), 83–86. https://doi. org/10.1002/mds.870080115.
[10] Wakabayashi, K., Takahashi, H., Takeda, S., et al., 1988. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 76 (3), 217–221. https://doi.org/10.1007/BF00687767.
[11] Wakabayashi, K., Takahashi, H., Ohama, E., et al., 1990. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79 (6), 581–583. https://doi.org/10.1007/BF00294234.
[12] Braak, H., Rub, U., Gai, W.P., et al., 2003b. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110 (5), 517–536. https://doi.org/10.1007/ s00702-002-0808-2.
[13] Travagli, R.A., Browning, K.N., Camilleri, M., 2020. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17 (11), 673–685. https://doi.org/10.1038/s41575-020-0339-z.
[14] Jellinger, K.A., 2012. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov. Disord. 27 (1), 8–30. https://doi.org/10.1002/ mds.23795.
[15] Olanow, C.W., 2012. A colonic biomarker of Parkinson’s disease. Mov. Disord. 27 (6), 674–676. https://doi.org/10.1002/mds.25067.
[16] Chapman, M.R., Robinson, L.S., Pinkner, J.S., et al., 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295 (5556), 851–855. https:// doi.org/10.1126/science.1067484.
[17] Wang, C., Lau, C.Y., Ma, F., et al., 2021. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc. Natl. Acad. Sci. USA 118 (34). https://doi.org/10.1073/pnas.2106504118.
[18] ampson, T.R., Challis, C., Jain, N., et al., 2020. A gut bacterial amyloid promotes alphasynuclein aggregation and motor impairment in mice. eLife 9. https://doi.org/ 10.7554/eLife.53111.
[19] arraufie, P., Martin-Gallausiaux, C., Lapaque, N., et al., 2018. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8 (1), 74.
[20] olhurst, G., Heffron, H., Lam, Y.S., et al., 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2), 364–371.
[21] Erny, D., Hrabe de Angelis, A.L., Jaitin, D., et al., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18 (7), 965–977.
[22] Macia, L., Tan, J., Vieira, A.T., et al., 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734
[23] Sampson, T.R., Debelius, J.W., Thron, T., et al., 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167 (6), 1469–1480.
[24] Wahlstrom, A., Sayin, S.I., Marschall, H.U., et al., 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24 (1), 41–50.
[25] Abe, K., Kimura, H., 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16 (3), 1066–1071.
[26] Kimura, H., 2000. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem. Biophys. Res. Commun. 267 (1), 129–133.
[27] Nagai, Y., Tsugane, M., Oka, J., et al., 2004. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 18 (3), 557–559.
[28] Cirstea, M.S., Yu, A.C., Golz, E., et al., 2020. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. 35 (7), 1208–1217.
[29] eintz-Buschart, A., Pandey, U., Wicke, T., et al., 2018. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder.
[30] Lyte, M., Li, W., Opitz, N., et al., 2006. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89 (3), 350–357.
[31] Goehler, L.E., Park, S.M., Opitz, N., et al., 2008. Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav. Immun. 22 (3), 354–366
[32] Bravo, J.A., Forsythe, P., Chew, M.V., et al., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108 (38), 16050–16055.
[33] Bercik, P., Park, A.J., Sinclair, D., et al., 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23 (12), 1132–1139.
[34] Heintz-Buschart, A., Pandey, U., Wicke, T., et al., 2018. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33 (1), 88–98.
[35] Barichella, M., Severgnini, M., Cilia, R., et al., 2019. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34 (3), 396–405.
[36] Pietrucci, D., Cerroni, R., Unida, V., et al., 2019. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Park. Relat. Disord. 65, 124–130.
[37] Lin, C.H., Chen, C.C., Chiang, H.L., et al., 2019. Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J. Neuroinflamm. 16 (1), 129.
[38] Minato, T., Maeda, T., Fujisawa, Y., et al., 2017. Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLOS One 12 (11), e0187307.
[39] Maini Rekdal, V., Bess, E.N., Bisanz, J.E., et al., 2019. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364 (6445).
[40] Bao, X.Q., Kong, X.C., Qian, C., et al., 2012. FLZ protects dopaminergic neuron through activating protein kinase B/mammalian target of rapamycin pathway and inhibiting RTP801 expression in Parkinson’s disease models. Neuroscience 202, 396–404.
[41] Tai, W., Ye, X., Bao, X., et al., 2013. Inhibition of Src tyrosine kinase activity by squamosamide derivative FLZ attenuates neuroinflammation in both in vivo and in vitro Parkinson’s disease models. Neuropharmacology 75, 201–212.
[42] Zhang, D., Zhang, J.J., Liu, G.T., 2007. The novel squamosamide derivative FLZ protects against 6-hydroxydopamine-induced apoptosis through inhibition of related signal transduction in SH-SY5Y cells. Eur. J. Pharmacol. 561 (1–3), 1–6.
[43] Shang, J., Ma, S., Zang, C., et al., 2021. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson’s disease treatment. Acta Pharm. Sin. B 11 (5), 1213–1226.
[44] Shin, C., Lim, Y., Lim, H., et al., 2020. Plasma short-chain fatty acids in patients with Parkinson’s disease. Mov. Disord. 35 (6), 1021–1027.
[45] Hill-Burns, E.M., Debelius, J.W., Morton, J.T., et al., 2017. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32 (5), 739–749.
[46] Scheperjans, F., Aho, V., Pereira, P.A., et al., 2015. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord. 30 (3), 350–358.
本文完