查看原文
其他

专家点评 Cell Stem Cell︱李亚东/罗艳佳/宋娟等发现改善AD认知情感损害新策略

李亚东 逻辑神经科学
2024-08-26


撰文︱李亚东点评︱段树民(中国科学院院士,浙江大学), 黄志力(复旦大学)责编︱王思珍,方以一

阿尔兹海默病(Alzheimer’s diseases,AD)是一类以认知情感损害为主要表现的严重的神经退行性疾病。随着人口老龄化的进程,AD患者日益增加已形成严重的社会和经济负担。我国约有1000万AD患者,占世界AD患者总人口的1/4。然而,目前AD尚无有效的治疗手段,靶向淀粉样斑块和磷酸化Tau蛋白的新药开发虽有进展,但疗效不尽如人意。寻找改善AD认知情感障碍的新策略是当今神经科学研究的热点和难点问题。


海马神经元丢失和功能损害与AD认知情感损害的发生密切相关。近年来,随着单细胞测序等新技术的发展以及对传统免疫组织化学方法的优化,人类和哺乳动物成年海马神经发生(Adult hippocampal neurogenesis,AHN)产生新生神经元(Adult born neurons, ABN)已被基本接受[1-7]。尽管ABN数量较少(<0.5%海马齿状回颗粒细胞),其在记忆情感等行为调控中发挥着重要作用[8-14]。AD患者和模型动物ABN数量急剧降低且功能受损,可能是引起记忆和情感损害的重要原因[1-7]。但提高ABN数量能否改善AD认知情感损害尚有争议,靶向ABN改善AD认知情感损害的新策略有待确立。


2023年4月6日,北卡罗来纳大学教堂山分校宋娟课题组博士后李亚东罗艳佳等在调控ABN改善AD认知情感障碍方向取得重要研究进展,相关成果以“Activation of hypothalamic-enhanced adult-born neurons restores cognitive and affective function in Alzheimer's disease”’为题在Cell Stem Cell以Article形式发表。研究表明下丘脑增强的成年出生神经元的激活可恢复阿尔茨海默病的认知和情感功能。


宋娟课题组长期研究调控AHN的神经环路以及ABN调控记忆情感的作用和机制[15-20](参考综述[21](详见“逻辑神经科学”报道(点击阅读):Curr Opin NeurobiolUNC 李亚东/罗艳佳/宋娟综述多水平调控成年海马神经发生改善记忆和情感功能。其课题组最近研究发现,刺激下丘脑乳头上核(supramammillary nucleus,SuM)可以明显增加成年小鼠海马ABN数量和成熟度。SuM在觉醒、学习记忆和运动等行为调控中发挥重要作用,介导了新环境和运动刺激等调控AHN的作用。化学遗传学法(chemogenetics)激活健康小鼠的ABN促进空间记忆提取,对抗焦虑样行为。尤为重要的是,激活SuM环路修饰的ABN进一步促进空间记忆提取,对抗焦虑样行为详见“逻辑神经科学”报道(点击阅读):Nat Neurosci︱宋娟团队揭示下丘脑环路调控海马神经发生促进记忆提取对抗焦虑样行为。据此,研究人员尝试将调控海马新生神经元的策略应用于AD认知情感障碍的干预。

使用谱系示踪(linger tracing)的方法,研究人员发现,3.5-month 5xFAD模型小鼠AHN已经受损,神经干细胞和分裂的神经前体细胞数量明显降低,但此时AD小鼠并未表现出空间记忆和情感损害。一个月后,当受损的神经干细胞发育成ABN时,4.5-month 5xFAD小鼠ABN数量显著降低且表现出明显的记忆和情感损害。由此说明,AD小鼠的AHN损害早于记忆情感障碍,提示干预AHN可能改善AD认知情感损害。


激活健康小鼠的ABN促进空间记忆提取,对抗焦虑样行为。激活AD小鼠ABN是否同样能够改善记忆情感功能呢?遗憾的是,chemogenetics激活4.5-month 5xFAD小鼠ABN不足以改善空间记忆和焦虑抑郁等情感障碍,这可能与AD小鼠的ABN数量降低且功能受损有关。那么增加ABN数量能够改善记忆情感功能呢?使用光遗传学法(optogenetics)刺激SuM可以促进5xFAD小鼠AHN,增加ABN数量、树突棘密度和向CA3的投射,提示ABN的数量和突触连接均被改善。遗憾的是,AD小鼠的记忆情感功能并未明显提高。以上实验表明无论是激活受损的ABN还是单纯增加ABN数量均不足以改善AD小鼠记忆情感功能


于是,研究人员决定同时调控ABN数量、成熟度和活性,以最大程度实现对记忆情感功能的改善。通过optogenetics刺激5xFAD小鼠SuM增加ABN数量和成熟度,而后在行为学检测前使用chemogenetics激活SuM环路修饰的ABN,增加其活性。研究结果显示,激活SuM环路修饰的ABN有效改善4.5-month 5xFAD小鼠空间记忆损害和抑郁样行为,使其恢复至健康小鼠水平(图1)。研究人员使用病理进程较慢的3xTg-AD模型小鼠进一步验证激活SuM环路修饰的ABN可以改善AD小鼠认知和情感障碍,结果发现,刺激SuM同样可以增加ABN数量,而激活SuM环路修饰的ABN成功拯救9-month和15-month 3xTg-AD小鼠记忆情感障碍。以上结果表明,靶向ABNs,通过刺激SuM环路增加ABN数量和成熟度,再激活经过SuM环路修饰的ABNs,实现对AD小鼠认知和情感障碍的拯救。

图1:激活SuM环路修饰的ABNs改善AD小鼠记忆和情感障碍。


研究人员继续探索激活SuM环路修饰的ABN改善记忆和情感的神经环路和分子机制。使用定量磷酸化蛋白质组学的方法,研究人员发现激活SuM环路修饰的ABN引起海马脑区长时程突触可塑性(LTP、神经元活性、突触发育和小胶质细胞吞噬作用等信号通路有关的的蛋白质磷酸化水平提高而激活没有SuM修饰的ABN则未发生以上改变(图2)。通过免疫组化方法验证发现,上述通路中的关键蛋白的磷酸化水平(pPLCg1, pCaMKII,pCREB)在海马齿状回,CA3和CA1均发生不同程度的改变。

图2:激活SuM环路修饰的ABN增加LTP、突触再生、CREB和小胶质细胞吞噬等信号通路的蛋白质磷酸化水平。


研究人员进一步在功能上验证了以上通路。激活SuM环路修饰的ABN增加海马CA1 LTP,CA1和CA3 的c-Fos表达和钙活性,提示海马神经网络功能发生改变。更有意思的是,激活SuM环路修饰的ABN促进DG小胶质细胞对淀粉样斑块的吞噬作用,改变小胶质细胞结构特征。而无论是刺激SuM环路或者激活没有经过SuM环路修饰的ABN均未发现以上改变。提示激活SuM环路修饰的ABN可能通过改变海马突触可塑性、神经元活性改善AD认知情感功能,同时促进小胶质细胞吞噬淀粉样斑块作用

图3:总结图—激活SuM环路修饰的ABNs改善AD小鼠记忆和情感功能。

文章结论与讨论,启发与展望

该研究发现,只需激活大约300个经过SuM环路修饰的ABNs即可改善AD小鼠认知情感障碍(图3)。其创新性在于:在功能上,尽管ABN数量较少,但是靶向少量的ABN即可改善行为;在理论上,提出需要综合改善ABN数量、成熟度和神经元活性才可实现对认知和情感功能拯救;在机制解析上,发现激活SuM环路修饰的ABN提高海马神经网络活性,促进小胶质细胞对淀粉样斑块的吞噬作用,在分子机制上,提供了潜在的蛋白靶点,为临床转化和药物开发提供方向(参考综述,详见“逻辑神经科学”报道(点击阅读):Curr Opin Neurobiol︱UNC 李亚东/罗艳佳/宋娟综述多水平调控成年海马神经发生改善记忆和情感功能)。本研究提出的通过干预觉醒核团(SuM),调控神经发生;进而通过激活ABN改善记忆和情感功能的新策略可能成为干预AD认知和情感损害的新方法。


研究不足:本研究尚存的不足:①只使用了过表达AD模型小鼠,添加APP knock-in模型小鼠可能更好的模拟AD的病理特征;②小胶质细胞吞噬淀粉样蛋白斑块的长期效应尚未确定;③如何利用本研究发现的蛋白靶点进行药物开发和临床转化还有待研究。


专  家  点  评

段树民(中国科学院院士, 浙江大学教授、医药学部主任,复旦大学脑科学转化研究院院长,上海交通大学松江研究院院长)


记忆的发生和调控机制以及如何改善神经退行性疾病(如AD)的记忆障碍是当今神经科学研究的热点和难点问题。宋娟课题组的最新研究从全新的角度提出调控经过下丘脑SuM神经环路修饰的海马新生神经元可能是改善AD小鼠记忆和情感障碍的新策略,并在机制上做出探索:发现激活SuM修饰的海马新生神经元增强海马突触可塑性,增加小胶质细胞对淀粉样斑块的吞噬作用,扩展了调控海马神经发生改善记忆的机制。


有趣的是,下丘脑SuM核团是重要的促觉醒脑区。我们前期研究发现激活基底前脑胆碱能神经元促觉醒
(韩勇,Current biology 2014),而基底前脑胆碱能神经元对海马依赖的记忆编码发挥重要调控作用,且在AD中受损。以上研究提示觉醒系统受损在AD记忆障碍发生中可能发挥重要作用。


黄志力(复旦大学基础医学院教授、药理学系主任,中国睡眠研究会理事长)


觉醒是记忆和情感等行为的生物学基础,觉醒异常会导致记忆和情感障碍。UNC宋娟课题组专注于下丘脑觉醒核团乳头上核(SuM)控记忆的作用和机制研究,在前期发现SuM促进记忆提取
eLife 2020)的基础上,提出SuM通过调控海马神经发生促进学习记忆的作用和新机制Nat Neurosci 2022; Curr Opin Neurobiol 2023),并将该策略应用于AD认知情感障碍的干预Cell Stem Cell, 2023)


AD的觉醒睡眠障碍的发生早于记忆损害,该研究的发现提示干预觉醒系统可能是改善AD记忆障碍的新策略。


原文链接:https://doi.org/10.1016/j.stem.2023.02.006 


Song lab合照: 宋娟(左一),李亚东(左三),罗艳佳(左五)。

(照片提供自:宋娟/李亚东团队)


宋娟(左),李亚东(中),罗艳佳(右)

(照片提供自:宋娟/李亚东团队)


课题组招聘(上下滑动查看) 

上海交通大学李亚东课题组诚聘副研究员和博士后。


李亚东:(联系方式:yadlee@126.com上海交通大学松江研究院研究员,独立PI,博士生导师。研究方向:①睡眠觉醒的发生机制和对学习记忆的调控作用。②阿尔兹海默病认知情感障碍的干预策略。③成年海马神经发生的调控和对记忆情感行为的作用。李亚东课题组主要在生理和病理(神经退行性疾病)状态下,研究觉醒调控记忆的作用和机制,使用EEG/EMG记录、在体/离体电生理、高分辨率单/双光子成像、在体多通道钙信号记录、蛋白质组学和光/化学遗传学操控方法等技术,发现了腹侧基底神经节环路中伏隔核和腹侧苍白球两个重要的觉醒核团,为进一步研究觉醒调控记忆的神经环路夯实了基础Molecular Psychiatry,2021;Nature Communications,2018);揭示了下丘脑觉醒环路促进成年海马神经发生、改善记忆的独特机制,提出了通过提高觉醒水平,促进海马神经发生改善学习记忆的新思路eLife,2020;Nature Neuroscience,2022;Current Opinion in Neurobiology, 2023),并初步应用于改善AD认知和情感障碍Cell Stem Cell,2023)。


代表性论著:

Li YD, et al. (2023), Activation of hypothalamic-enhanced adult-born neurons restores cognitive and affective function in Alzheimer's disease, Cell Stem Cell 30 (3)Li YD, et al. (2023), Optimizing memory performance and emotional states: multi-level enhancement of adult hippocampal neurogenesis, Current Opinion in Neurobiology, 2023, 79Li YD, et al. (2022), Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior, Nature Neuroscience 25, 630–645Li YD, et al. (2021), Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway, Molecular psychiatry 26 (7), 2912-2928Li YD, et al. (2020), Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release, Elife 9, e53129

Li YD, et al. (2019), High cortical delta power correlates with aggravated allodynia by activating anterior cingulate cortex GABAergic neurons in neuropathic pain mice, Pain161 (2), 288-299

Luo YJ, Li YD, et al. (2018), Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors, Nature communications 9 (1), 1576


UNC宋娟课题组诚聘博士后助理研究员

宋娟实验室关注成年海马神经发生和记忆情感行为。使用分子生物学(单细胞测序和蛋白质组学)、神经环路操控、在体电生理和钙信号记录、双光子成像、脑片膜片钳和行为学检测等方法,在健康和疾病(AD、焦虑/抑郁、癫痫等)模型中研究神经环路调控海马神经发生和海马新生神经元调控记忆情感的作用以及胶质细胞和神经元互作。相关研究成果发表在Nature,Nature Neuroscience (2),Cell Stem Cell(2)和Neuron(2)等期刊,并应邀为Trends in Molecular Medicine,Current Opinion in Neurobiology等期刊撰写综述。宋娟课题组经费充足(长期受多项R01项目支持),诚聘神经科学、分子生物学背景博士后。https://songlab.web.unc.edu


Song Lab Selected Publications

Li YD, Luo YJ…Song J (2023), Activation of hypothalamic-enhanced adult-born neurons restores cognitive and affective function in Alzheimer's disease, Cell Stem Cell 30 (3)

Li YD, Luo YJ…Song J (2022), Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior, Nature Neuroscience 25, 630–645Asrican B, Wooten J…Song J* (2020). Neuropeptides modulate local astrocytes to regulate adult hippocampal neural stem cells. Neuron 108(2):349-366.Li Y… Song J (2020). Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release. eLife doi: 10.7554/eLife.53129.Yeh CY, Asrican B… Song J (2018). Mossy cells control adult neural stem cell quiescence and maintenance through a dynamic balance between direct and indirect pathways. Neuron 99(3):493-510.Bao H, Asrican B, Li W… Song J (2017). Long-range GABAergic inputs regulate neurl stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell 21(5):604-617.Song J… Song H (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nature Neuroscience 16(12):1728-30.Song J… Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489: 150-154.


转载须知“逻辑神经科学”特邀稿件,本内容著作权归作者和“逻辑神经科学”共同所有,欢迎个人转发分享,未经授权禁止转载,违者必究。


辑神经科学群:文献学习2扫码添加微信,并备注:逻辑-文献-姓名-单位-研究领域-学位/职称      

往期文章精选【1】Cell︱突破!大中性氨基酸在调节神经元代谢状态、兴奋性和围产期神经元存活中发挥重要作用【2】Sci Adv︱杨雄里院士团队揭示自感光视网膜神经节细胞–中央杏仁核环路介导明亮光照诱发的小鼠持续性焦虑样行为【3】EJNMMI︱耶鲁大学蔡正昕团队开发首例脑穿透型PARP PET显像探针,并在大鼠胶质母细胞瘤和非人灵长类动物中进行临床前评价【4】Science︱突破!孤儿G蛋白偶联受体GPR158作为一种代谢甘氨酸受体:mGlyR【5】Redox Biol︱中科院团队揭示短链脂肪酸促进星形胶质细胞-神经元代谢偶联缓解阿尔茨海默病【6】Cell Metab︱下丘脑中增强饥饿的突触机制【7】Mol Psychiatry︱华科大陈建国/王芳团队揭示NIX介导的线粒体自噬损伤在炎症致抑郁症发生中扮演重要作用
【8】NeuroImage︱浙大吴丹课题组发布基于新生儿多模态影像数据的多尺度分割脑区模板【9】Science︱重磅!胞内抗体TRIM21介导小鼠模型中tau蛋白免疫治疗的有效性【10】PHR︱重医谢鹏团队揭示核受体相关蛋白Nr4a2的抗抑郁新机制科研学习课程精选【1】多模态脑影像数据的处理与分析及论文写作培训班(4月15-16日,腾讯会议)【2】Python生物信息从入门到进阶研讨会(4月7-9日,腾讯会议)【3】计算机辅助药物设计技能实操研讨会(4月15-16日,腾讯会议)【5】肠道菌群与代谢组学研究策略研讨会(4月22-23日  腾讯会议)【6】单细胞测序与空间转录组学数据分析研讨会(4月15-16日,腾讯在线会议)【7】膜片钳与光遗传及钙成像技术研讨会(4月8-9日 腾讯会议)学术会议预告【1】会议通知︱第五届北京·山东BABRI脑健康与认知障碍高峰论坛暨第三届中国老年脑健康大会(2023年4月21-23日,山东济南)【2】会议通知︱中国神经科学学会神经胶质细胞分会2023学术年会暨“神经胶质细胞代谢调控与疾病”专题国际研讨会(2023年5月5-7日,苏州)
【3】会议通知︱2023年成瘾与脑科学国际研讨会暨中国药物滥用防治协会成瘾与脑科学分会第一届学术会议(2023年4月9-10日,深圳)【4】会议通知︱2023中国衰老科学大会第一轮通知(2023年4月21-23日,北京)【5】会议通知︱中国神经科学学会神经影像学分会2023学术年会(2023年5月19-21日,广州)【6】学术会议预告︱Novel Insights into Glia Function & Dysfunction(2023年4月24-28日,日本)【7】会议通知︱第六届中国神经科学学会神经退行性疾病分会年会会议通知(2023年4月7-9日,湖南长沙)          参考文献(上下滑动查看)  1. Moreno-Jimenez, E.P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-Bazarra, N., Avila, J., and Llorens-Martin, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med 25, 554-+.
2. Tobin, M.K., Musaraca, K., Disouky, A., Shetti, A., Bheri, A., Honer, W.G., Kim, N., Dawe, R.J., Bennett, D.A., Arfanakis, K., and Lazarov, O. (2019). Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer's Disease Patients. Cell stem cell 24, 974-982

3. Terreros-Roncal, J., Moreno-Jimenez, E.P., Flor-Garcia, M., Rodriguez-Moreno, C.B., Trinchero, M.F., Cafini, F., Rabano, A., and Llorens-Martin, M. (2021). Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science 374, 1106-1113.

4. Zhou, Y., Su, Y., Li, S., Kennedy, B.C., Zhang, D.Y., Bond, A.M., Sun, Y., Jacob, F., Lu, L., Hu, P., et al. (2022). Molecular landscapes of human hippocampal immature neurons across lifespan. Nature 607, 527-533.

5. Ammothumkandy, A., Ravina, K., Wolseley, V., Tartt, A.N., Yu, P.N., Corona, L., Zhang, N., Nune, G., Kalayjian, L., Mann, J.J., et al. (2022). Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nature neuroscience 25, 493-503.

6. Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219-1227.

7. Wang, W., Wang, M., Yang, M., Zeng, B., Qiu, W., Ma, Q., Jing, X., Zhang, Q., Wang, B., Yin, C., et al. (2022). Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell research 32, 729-743.

8. Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., and Bussey, T.J. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210-213.

9. Sahay, A., Scobie, K.N., Hill, A.S., O'Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466-470.

10. Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S.R., Josselyn, S.A., Frankland, P.W., and Ge, S. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nature neuroscience 15, 1700-1706.

11. Danielson, N.B., Kaifosh, P., Zaremba, J.D., Lovett-Barron, M., Tsai, J., Denny, C.A., Balough, E.M., Goldberg, A.R., Drew, L.J., Hen, R., et al. (2016). Distinct Contribution of Adult-Born Hippocampal Granule Cells to Context Encoding. Neuron 90, 101-112.

12. McHugh, S.B., Lopes-Dos-Santos, V., Gava, G.P., Hartwich, K., Tam, S.K.E., Bannerman, D.M., and Dupret, D. (2022). Adult-born dentate granule cells promote hippocampal population sparsity. Nature neuroscience.

13. Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458-461.

14. Anacker, C., Luna, V.M., Stevens, G.S., Millette, A., Shores, R., Jimenez, J.C., Chen, B., and Hen, R. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559, 98-102.

15. Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150-154.

16. Song, J., Sun, J., Moss, J., Wen, Z., Sun, G.J., Hsu, D., Zhong, C., Davoudi, H., Christian, K.M., Toni, N., et al. (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nature neuroscience 16, 1728-1730.

17. Bao, H., Asrican, B., Li, W., Gu, B., Wen, Z., Lim, S.A., Haniff, I., Ramakrishnan, C., Deisseroth, K., Philpot, B., and Song, J. (2017). Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis. Cell stem cell 21, 604-617 e605.

18. Asrican, B., Wooten, J., Li, Y.D., Quintanilla, L., Zhang, F., Wander, C., Bao, H., Yeh, C.Y., Luo, Y.J., Olsen, R., et al. (2020). Neuropeptides Modulate Local Astrocytes to Regulate Adult Hippocampal Neural Stem Cells. Neuron.

19. Yeh, C.Y., Asrican, B., Moss, J., Quintanilla, L.J., He, T., Mao, X., Casse, F., Gebara, E., Bao, H., Lu, W., et al. (2018). Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron.

20. Li, Y.D., Luo, Y.J., Chen, Z.K., Quintanilla, L., Cherasse, Y., Zhang, L., Lazarus, M., Huang, Z.L., and Song, J. (2022). Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nature neuroscience 25, 630-645.

21. Li, Y.D., Luo, Y.J., and Song, J. (2023). Optimizing memory performance and emotional states: multi-level enhancement of adult hippocampal neurogenesis. Curr Opin Neurobiol 79, 102693.


编辑︱王思珍
本文完
继续滑动看下一个
逻辑神经科学
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存