查看原文
其他

系统梳理DID最新进展: 从多期DID的潜在问题到当前主流解决方法和代码!

凡是搞计量经济的,都关注这个号了
邮箱:econometrics666@126.com
所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问.

关于多期DID或交叠DID: 1.DID相关前沿问题“政策交错执行+堆叠DID+事件研究”, 附完整slides,2.交错(渐进)DID中, 用TWFE估计处理效应的问题, 及Bacon分解识别估计偏误,3.典范! 这篇AER在一图表里用了所有DID最新进展方法, 审稿人直接服了!4.最新Sun和Abraham(2020)和TWFE估计多期或交错DID并绘图展示结果!详细解读code!5.多期DID或渐进DID或交叠DID, 最新Stata执行命令整理如下供大家学习,6.多期DID前沿方法大讨论, e.g., 进入-退出型DID, 异质性和动态性处理效应DID, 基期选择问题等,7.交叠DID中平行趋势检验, 事件研究图绘制, 安慰剂检验的保姆级程序指南!8.欣慰! 营养午餐计划终于登上TOP5! 交叠DID+异质性稳健DID!9.用事件研究法开展政策评估的过程, 手把手教学文章!

之前推荐了这篇“从双重差分法到事件研究法, 双重差分滥用与需要注意的问题“综述性文章,今天,我们再推荐一篇多期DID或交叠DID或渐进DID或多期DID最新进展的综述性文章《多时点双重差分法的潜在问题与解决措施》

正文

王鹏超,韩立彬.多时点双重差分法的潜在问题与解决措施[J].东北财经大学学报,2023,No.146(02):27-39

多时点双重差分法具有准自然试验特征,可以相对干净地识别因果效应,广泛应用于与政策评估相关的研究中,但必须重视其可能存在的估计偏差问题。本文总结了多时点双重差分法存在的问题和相应的解决措施。通过梳理最新文献发现,多时点双重差分法回归系数识别的是组别—时间处理效应的加权平均,而非受处理个体的平均处理效应。在异质性处理效应下,多时点双重差分法估计系数有偏,严重时估计系数符号会与真实系数符号相反。目前文献上提出的解决措施可以归结为一个诊断方法和三类解决方法。其中,诊断方法为Goodman-Bacon的系数分解定理,三类解决方法分别是加总方法、两步回归法和堆叠型双重差分法。
计量经济学可信性革命推动了实证经济学进展,因果推断成为实证经济学研究的显学。2021年,诺贝尔经济学奖授予Card、Angrist和Imbens三位学者,表彰Card对劳动经济学领域的实证贡献,以及Angrist和Imbens对因果推断方法的贡献。这充分肯定了因果推断方法在经济学中的应用与发展。双重差分法(Difference-In-Difference,DID) 作为应用最广的因果推断方法之一,可以相对干净地识别因果效应,在政策评估中受到国内外学者青睐。本文统计了2005—2020年使用DID方法的中文期刊文章数量。DID已成为国内实证研究者进行学术研究的重要工具。
根据政策实施时点的不同,DID 一般可分为单时点DID(一刀切DID)和多时点DID(Multiple DID)。然而学界对多时点DID识别的系数含义与正确性却较少讨论。单时点DID识别的是受处理个体的平均处理效应(Average Treatment Effect on the Treated,ATT),多时点DID识别的是否也是受处理个体的平均处理效应?多时点DID估计系数是否有偏?现有文献并未过多讨论。《American Economic Review》2020年第9期,Chaisemartin和D'Haultfoeuille探讨了多时点DID存在的问题,《Journal of Econometrics》在2021年第2期发布了“处理效应”专题,其中3篇文章与多时点DID识别直接相关。表明学术界对这一方法存在问题的高度关注。
最新研究发现,多时点DID估计系数识别的并不是受处理个体的平均处理效应,而是组别—时间处理效应的加权平均。当存在异质性处理效应时,估计系数有偏。Goodman-Bacon认为,多时点DID估计系数可分解为多个单时点DID系数的加权平均,权重与每个单时点DID的样本份额和解释变量方差相关,且都为正值。然而,部分单时点DID把早接受处理组作为晚接受处理组的对照组,在异质性处理效应下,这部分系数可能为负,从而总体估计系数会存在较大偏差。Chaisemartin和D'Haultfoeuille、Borusyak和Jaravel以及Borusyak等认为,组别—时间处理效应为正,但部分权重为负,导致最终估计结果有偏。虽然事件研究法可以将不同处理时点转化为处理时点一致的相对时点,但Sun和Abraham证明,事件研究法设定中的每一相对时点系数不仅与该相对时点系数相关,还与回归方程中其他相对时点系数及被剔除在方程之外的相对时点系数相关。在异质性处理效应下,利用相对时点系数大小检验平行趋势假定是否满足也会存在问题。

针对多时点DID存在的问题,学者们提出了不同的解决方法,本文将其归结为一个诊断方法和三类解决方法。其中,诊断方法为Goodman-Bacon的系数分解定理,该方法用于诊断估计系数的偏差程度。第一类解决方法为Sun和Abraham、Callaway和Sant'Anna提出的加总方法,即分别估计每个时期每个组别平均处理效应,再将其加总得到所有受处理个体的平均处理效应;第二类解决方法为Gardner和Borusyak和Jaravel等提出的两步回归法;第三类解决方法为堆叠型DID(stacked DID),将每一政策时点前后一段时期内的处理组和干净的对照组形成一个数据集,之后把所有的数据集堆叠并进行回归。

多期DID前沿方法大讨论, e.g., 进入-退出型DID, 异质性和动态性处理效应DID, 基期选择问题

*下面内容用PC端看起来更舒服。

五、结论与建议

多时点DID识别的不是受处理个体的平均处理效应,而是组别—时间处理效应的加权平均。特别是,如果存在异质性处理效应,多时点DID的估计系数与真实系数会存在偏差。依据文献给出的解决思路,本文将解决方法归纳为一个诊断方法和三类解决方法。
随着DID在经济学实证研究中的广泛应用,学者有必要了解多时点DID问题的应对方式,以保证实证中估计系数的一致性。基于此,本文给出以下四点建议:第一,重视对政策背景和研究设计的讨论,清晰地阐述不同组别受政策影响的可能方向;第二,在处理组较少时,可以通过观察不同处理组和对照组的时间趋势,以此检验异质性处理效应对结果的影响及平行趋势假定是否满足;第三,如果是面板数据结构,可利用系数分解定理评估系数偏差大小;第四,从实践角度出发,在利用多时点DID作为识别策略时,研究者应至少在以上三类解决方法中选择其一,加强实证结果的可靠性和稳健性。

关于交叠或多期DID,参看1.120篇DID双重差分方法的文章合集, 包括代码,程序及解读, 建议收藏!2.诚实双重差分法DID, 面板事件研究法和Bacon分解的经典应用文!3.前沿: 多期或渐进或交叠DID, 如何进行平行趋势检验呢?4.多期DID或渐进DID或交叠DID, 最新Stata执行命令整理如下供大家学习,5.DID前沿: 5种方法估计事件研究的因果效应, 并使用绘制系数和置信区间, 详细代码和数据,6.事件研究法开展政策评估和因果识别, 分享8篇提供数据和代码的文章,7.推荐用渐进(多期)DID和事件研究法开展政策评估的论文及其实现数据和代码!8.机器学习已经与政策评估方法, 例如事件研究法结合起来识别政策因果效应了!9.前沿, 模糊双重差分法FDID方法介绍和示例, 附code和数据!10.双重差分法和事件研究法的区别主要在哪里?11.前沿, 合成双重差分法SDID方法介绍和示例, 附code和数据!12.具有空间溢出效应的双重差分法估计最全综述, 理论和操作尽有!13.最新Sun和Abraham(2021)和TWFE估计多期或交错DID并绘图展示结果!详细解读code!


下面这些短链接文章属于合集,可以收藏起来阅读,不然以后都找不到了。

5年,计量经济圈近1500篇不重类计量文章,

可直接在公众号菜单栏搜索任何计量相关问题,

Econometrics Circle




数据系列空间矩阵 | 工企数据 | PM2.5 | 市场化指数 | CO2数据 |  夜间灯光 | 官员方言  | 微观数据 | 内部数据计量系列匹配方法 | 内生性 | 工具变量 | DID | 面板数据 | 常用TOOL | 中介调节 | 时间序列 | RDD断点 | 合成控制 | 200篇合辑 | 因果识别 | 社会网络 | 空间DID数据处理Stata | R | Python | 缺失值 | CHIP/ CHNS/CHARLS/CFPS/CGSS等 |干货系列能源环境 | 效率研究 | 空间计量 | 国际经贸 | 计量软件 | 商科研究 | 机器学习 | SSCI | CSSCI | SSCI查询 | 名家经验计量经济圈组织了一个计量社群,有如下特征:热情互助最多、前沿趋势最多、社科资料最多、社科数据最多、科研牛人最多、海外名校最多。因此,建议积极进取和有强烈研习激情的中青年学者到社群交流探讨,始终坚信优秀是通过感染优秀而互相成就彼此的。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存