【专题】恒成立,能成立,恰成立问题
以下文章来源于潘越高中数学学习 ,作者潘越老师
第一篇:做一题,归一类,得一法(一)——求向量的数量积时遇到外心用投影
第二篇:做一题,归一类,得一法(二)——用几何法判断直线与椭圆、双曲线的位置关系
第三篇:做一题,归一类,得一法(三)——一类直线过定点问题的统一求解方法
第五篇:做一题、归一类、得一法(五)——巧转化,分两边,凹凸反转看零点
做一题、归一类、得一法(六)——横、纵坐标正余弦、定位单位圆
第七篇:做一题、归一类、得一法(七)——圆锥曲线的一个二级结论在求角等方面的应用
第八篇上:做一题,归一类,得一法(八)上——求通项重转化,招数用尽需归纳
第八篇下:做一题,归一类,得一法(八)下——求通项重转化,招数用尽需归纳
第九篇:做一题,归一类,得一法(九)——利用函数的对称性,巧解函数题
第十篇:做一题,归一类,得一法(十)——等和不等一字差、依据条件可转化
二、例题分析
【点评】不妨假设甲、乙两个人手里各有若干张牌,现从甲和乙手上分别任意抽取一张牌出来,甲任意抽取一张牌的点数都比乙的牌点数大,只要甲手上最小的牌的点数比乙手上最大的牌的点数大即可。
三、能力提升
【评注】本小题主要考查利用导数研究函数的单调性以及化归与转化的数学思想方法。
【评注】函数图像的之间的关系应转化为对应方程的解来处理,而后者可参变分离后利用导数讨论不含参数的新函数的值域即可得参数的取值范围.
【评注】本题考查利用函数图象交点个数求参数的取值范围,同时也考查了对称思想的应用,解题的关键就是将问题转化为两函数图象的交点个数来处理,考查数形结合思想的应用.
【评析】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力.
迎各位读者解答投稿:投稿邮箱cui1125@163.com,微信154358747,来信请写明作者姓名(或者推送时用的昵称)以及所在省份。投稿的稿件请用word,谢谢!
End
End
荐读:
看更多精彩文章
请长按下方图片扫码关注
奇趣数学苑