万圣节cos最像幽灵的竟然是他?!
虽然电影中有很多虚构成分,有很多与现实物理定律违背的桥段,小编仔细思索了一下,你别说,你还真别说,在物理中玻色爱因斯坦凝聚确实在现实世界中有着很多“幽灵”般的性质。
机灵的小编立马就想到,那么是不是玻色爱因斯坦凝聚也在cos幽灵呢?那么下面就一起来看看BEC究竟为什么能来cos“幽灵物质”。
玻色爱因斯坦凝聚
在理解玻色-爱因斯坦凝聚之前,我们首先需要了解基本粒子中的两大类:费米子与玻色子。
费米子是自旋为半整数(如1/2,3/2…)的粒子,它具有交换反对称性,满足Pauli不相容原理,即在一个量子态中只允许一个费米子存在,例如电子、质子、中子。玻色子是自旋为整数(如0,1,2…)的粒子,具有交换对称性,可以任意数目地占据同一个量子态,例如光子、氦-4原子。
玻色-爱因斯坦凝聚是一种量子物理现象,通常发生在极低温条件下(接近绝对零度)。在极低温下,玻色子会聚集到一个共同的量子态(基态)上,表现出与经典物理预测完全不同的特性。玻色-爱因斯坦凝聚理论由爱因斯坦和印度物理学家萨特延德拉·纳特·玻色于20世纪20年代预测,但是直到1995年这个现象才首次被实验观测到。
图4:铷原子速度的分布。图中的颜色显示多少原子处于这个速度上。红色表示只有少数原子的速度是该速度。白色表示许多原子是这个速度。最低速度显示白色或浅蓝色。左图:玻色-爱因斯坦凝聚出现前。中图:玻色-爱因斯坦凝聚刚刚出现。右图:几乎所有剩余的原子处于玻色-爱因斯坦凝聚状态。| 来源:wiki
在BEC中,由于玻色子进入了相同的基态,它们的行为不再是彼此独立的,而是表现得像一个宏观的“量子巨粒子”或“超原子”。这种新状态具有许多独特的量子特性,包括:
相干性:玻色-爱因斯坦凝聚体中的所有玻色子都处于相同的量子态,因此表现出相干性,即整个系统的波函数具有相同的相位。这意味着BEC可以用单个波函数表示,就像单个粒子一样。
超流性:在某些情况下(例如在超流氦中),BEC表现出无摩擦的流动,即超流性。超流体在流动时不产生湍流和粘滞损失,这与经典流体行为截然不同。
量子涨落和长程相干性:由于系统温度接近绝对零度,热涨落被严重抑制。此时系统表现出明显的量子涨落,并且其量子相干性可以延伸到宏观尺度。
超流:幽灵特性
BEC 往往可以表现出无粘性的流动,即超流体。超流体是一种在接近绝对零度时出现的物质状态,具有零粘度、量子相干性、量子化涡旋等独特性质。
早在1930年代,科学家研究液氦发现,在温度降低到2.17K(-270.98摄氏度)以下时,液氦的物理性质发生了突变,表现出超流体的特性,这个相称为氦 II。为了解释氦 II 的性质,苏联物理学家列夫·朗道(Lev Landau)在1941年提出了超流理论。
但是朗道的理论主要是宏观和唯象性的,未深入探讨超流性的微观量子机制。后续的理论中Bogoliubov变换,费曼路径积分以及之前提到的玻色爱因斯坦统计都为解释理解量子化涡旋和超流体的微观行为提供了新的理论基础。
图5:小时候都玩过的“水龙卷” | 来源:爆炸实验室
是不是很像幽灵们在爬墙,图中也展示了超流是如何能够自由无阻地沿着墙壁或其他固体表面移动。
上图展示了实验中超流体可以通过底部的毛细管道(图中毛细孔道直径为0.1微米到10微米之间),这是原本液相所做不到的。这同样是超流的零黏度的特性导致的,它可以无阻力地通过极细的毛细管道,而普通流体在如此细微的通道中会受到巨大的黏性阻力,无法流动。所以超流能通过一些非常细小的空洞,宏观上表现得像是能穿墙一般。
探测幽灵
在许多关于幽灵的文学作品或者游戏中,往往幽灵是一种看不见摸不着的存在,需要一些特殊手段来探测其存在。
而在实验当中,我们也有很多实验上的方法对BEC进行观察。
吸收成像(Absorption Imaging)是探测BEC最常用的方法。基本原理是使用与BEC原子共振的激光束照射BEC原子云,部分光子会被原子吸收。在光束通过BEC之后,未被吸收的光在光敏探测器(如CCD相机)上留下阴影,通过分析阴影的深浅和形状可以得到BEC的密度分布。这种方法对BEC有一定的破坏性。
相位衬度成像(Phase-Contrast Imaging)是一种非破坏性的探测方法。激光经过BEC时会发生相位偏移,通过检测该相位偏移来推测BEC的密度和形状。这种方法利用与原子共振略微失谐的激光照射原子云,并检测相位变化带来的干涉图样。
拉曼光谱(Raman Spectroscopy)技术用于探测BEC的内部能级、激发模式以及自旋态结构。通过使用不同频率的激光对BEC进行拉曼散射,可以激发BEC的自旋或能级跃迁。拉曼光谱可以精确测量BEC内部的相互作用和自旋分布。
此外,还有飞行吸收成像(Time-of-Flight Imaging)等方式来探测BEC的不同信息。
用光谱探测玻色-爱因斯坦凝聚时,波长选择至关重要。在大多数探测方法中,激光波长需要与BEC原子共振,这样可以使光子与原子发生有效相互作用。例如,对于铷-87原子,常用的波长是D2线的780 nm或D1线的795 nm,这些波长能够引发原子从基态到激发态的跃迁。在一些无损探测方法(如相位衬度成像)中,使用略微失谐的波长,可以减少对原子的直接激发,以保持BEC的完整性。
来开开脑洞
消灭“幽灵”:俗话说的好,一切恐惧来源于火力不足。所以咱们当然也得想想怎么消灭BEC构成的幽灵。
在《幽冥》电影中,士兵利用等离子炮消灭了“幽灵”。等离子体放电确实可以会对玻色-爱因斯坦凝聚产生破坏性影响,原因在于等离子体放电会对BEC系统引入高能粒子、强电磁场以及热量,这些因素会破坏BEC所需的低温和量子相干性。
等离子体放电过程中,系统会产生大量高能粒子(如离子和电子),这些粒子与BEC相互作用会将能量传递给BEC的原子,使它们的温度上升,从而破坏BEC。然而我们知道,“幽灵”是有火抗的,所以这并不是消灭“幽灵”的原因。等离子体放电往往伴随着强烈的电磁场,这些电磁场会引起BEC系统中原子能级的变化。特别是在存在磁矩的情况下(如磁阱中的BEC),外加电磁场会干扰原子的自旋态和磁相互作用,使BEC内的原子波函数相位关系混乱,破坏相干性,从而破坏凝聚态结构。这或许就是能够消灭“幽灵”的原因~
所以老话说的好:学好理数化,世界末日都不怕。
总之,虽然超流具有如此神奇的性质,但是我们也要认识到幽灵毕竟是人们的幻想,是不切实际的~
最后,希望大家能过一个愉快的万圣节~
参考文献
[1]. https://zh.wikipedia.org/wiki/%E7%8E%BB%E8%89%B2%E2%80%93%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%E5%87%9D%E8%81%9A
[2]. Landau, L. D. (1941).The theory of superfluidity of helium II. Journal of Physics (USSR), 5, 71.
[3]. Landau, L. D., & Lifshitz, E. M. (1980). Statistical Physics, Part 2. Pergamon Press.
[4]. Tilley, D. R., & Tilley, J. (1990). Superfluidity and Superconductivity. Institute of Physics Publishing.
[5]. https://www.59baike.com/fa/%E5%96%B7%E6%B3%89%E6%95%88%E5%BA%94
[6]. https://zhuanlan.zhihu.com/p/388617334
[7]. https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8
[8]. Meppelink, R., Rozendaal, R. A., Koller, S. B., Vogels, J. M., & van der Straten, P. (2009). Phase contrast imaging of Bose condensed clouds. arXiv preprint arXiv:0909.4429. Chicago
[9]. Andrews, M. R., Kurn, D. M., Miesner, H. J., Durfee, D. S., Townsend, C. G., Inouye, S., & Ketterle, W. (1997). Propagation of sound in a Bose-Einstein condensate. Physical review letters, 79(4), 553.
编辑:十一
近期热门文章Top10
↓ 点击标题即可查看 ↓