上海有机所刘国生课题组:光/铜共催化的自由基脱羧C(sp3)-C(sp3)偶联反应
基于前期的环丙醇开环反应,作者以光催化NHPI酯脱羧产生的碳自由基,结合环丙醇开环来探索C(sp3)-C(sp3)交叉偶联反应(表1)。通过对铜催化剂、光催化剂、配体等筛选,最终以定量收率得到目标产物,并且抑制了自偶联副反应(entry 8)。对照实验揭示了光催化剂和光对反应非常重要(entry 9-10)。相比之下,在没有铜催化剂的情况下,反应仅产生微量的产物,同时产生44%的苄基自由基自偶联产物,这表明在光催化条件下,NHPI的自由基脱羧和环丙醇2的开环反应同时发生。
aReaction conditions: NHPI ester 1a (0.1 mmol), cyclopropanol 2a (0.2 mmol), Cu catalyst (0.05 mmol, 5 mol%), L (0.06 mmol, 6 mol%), photocatalyst (2 mol%) in DMF (0.1 M), blue LEDs (6 W), rt, 36 h. bYields were determined by 19F NMR spectroscopy with fluorobenzene as an internal standard. cCu(OTf)2 (10 mol%), ligand (12 mol%). dIsolated yield. eWithout irradiation. PMP = 4-MeOC6H4.
随后,作者对环丙醇底物的范围也进行了考察。如表3所示,各种异芳基取代的环丙醇,如噻吩(3ah、3ai)、呋喃(3aj)、苯并噻吩(3ak)和吲哚(3al),都适用于交叉偶联反应。此外,1-烷基取代的环丙醇也能顺利进行反应。
接下来,作者考察了反应机理(图2)。在标准反应中添加TEMPO,没有偶联产物生成,仅检测到苄基自由基被捕获的产物5。同样,CBr4也抑制了自由基交叉偶联反应,以61%的收率检测到溴化产物7。这些结果表明苄基自由基参与了反应。鉴于上述反应中未能检测到相关的开环产物6和8,可以排除环丙醇的自由基开环的可能性。此外,该反应还可能经历α,β-不饱和酮中间体,然后通过自由基加成的方式生成交叉偶联产物。为了验证这种可能性,作者合成了化合物9并投入2b的标准反应中,并未检测到相应的产物3a,只得到环丙醇2b的交叉偶联产物3p,所以可排除这种可能。。
图2. 机理研究
基于这些研究和课题组之前的工作,作者提出了可能的机理。首先,光催化剂4CzIPN通过激发产生三重激发态[4CzIPN]*,与NHPI酯发生单电子转移,形成NHPI酯的阴离子自由基和4CzIPN的阳离子自由基。NHPI酯的阴离子自由基经历自由基脱羧反应,生成苄基自由基Int.I。氧化态的4CzIPN自由基阳离子可以迅速氧化LCuI为LCuII,后者通过环丙醇配位开环,生成稳定的二价烷基铜物种int.II。最后,二价烷基铜物种高效地捕获苄基自由基,生成目标交叉偶联产物。值得注意的是,配体L3对于调控该反应的化学选择性至关重要,但其详细作用尚不清楚。
图3. 可能的反应机理
【扩展阅读】
Selected Reviews on Organic Synthesis
谢作伟院士团队:廉价金属催化碳硼烷的区域选择性B(3,4,5,6)四烷基化
武汉大学吕辉课题组与石河子大学何林课题组:镍催化炔酮亚胺选择性不对称氢化合成手性胺
上海有机所梅天胜课题组:电促铑催化碳氢键转化——芳基胺和二氢喹唑啉酮的发散合成
暨南大学冯鹏举课题组:电化学时间调控的杂芳环氧化偶联/偶联环化反应
上海药物所戴辉雄课题组:双配体接力促进非张力酮转化为多氟联苯和腈
上海有机所游书力课题组:铑催化N-苯氧基酰胺与芳基1,3-丁二烯不对称环化反应研究
黄培强课题组:铱和三(五氟苯基)硼烷协同催化酰胺的高效、高选择性还原及其在药物合成与后期修饰中的应用
西北大学关正辉教授课题组:钯催化共轭二烯的支链选择性氢酰胺化合成β,γ-不饱和酰胺
涂永强院士团队:螺环氮杂卡宾-钌(IV)催化的芳烃和烯烃的碳-氢烯基化反应
刘小华和冯小明团队:手性胍/Pd(0)协同催化三组分反应“一锅法”合成四取代联烯
陆良秋与肖文精团队:可见光介导的钯催化不对称(6+2)偶极环化构建手性的八元环内酯骨架
厦大叶龙武教授团队:手性Brønsted酸催化的不对称分子间炔酰胺与p-QMs的[4+2]环加成反应