查看原文
其他

2017年中考压轴真题详细分类系列(23)——与一般三角形、四边形相关的问题(2)

永泰一中 张祖冬 初中数学延伸课堂 2022-07-16


声明:“初中数学延伸课堂”的所有文章,版权所有。欢迎并感谢朋友们分享和转发,但未经许可,不得在任何公共场合使用、开发及转载,违者必究!

建议阅读:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).

打开微信,点击“发现,点击“搜索”,再点击“资讯(这一步骤最重要)“,在跳出的对话框中输入“初中数学延伸课堂”,然后点击“初中数学延伸课堂”,继续输入“关键词”(如:福州),再点击“搜索”,就会得到所有标题或内容中含”福州“的文章,类似于“百度”搜索.

如果您还不会操作,建议阅读文章:如何快速查找到“初中数学延伸课堂”的相关文章直接点击打开).

6. (2017•绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.

(1)如图,若点D在线段BC上,点E在线段AC上.

      ①如果∠ABC=60°,∠ADE=70°,那么α=  °,β=  °,

      ②求α,β之间的关系式.

(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.

【详细解析】请点击“进入画板解析



7. (2017•金华)如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能合成一个无缝隙,无重叠的矩形,这样的矩形称为叠合矩形.

(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段    ,    ;S矩形AEFG:S▱ABCD=  .

(2)▱ABCD纸片还可以按图3方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;

(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.

【详细解析】请点击“进入画板解析



8. (2017江苏省南通市倒二)我们知道,三角形的内心是三条角平分线的交点.过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”.

      (1)等边三角形的“内似线”的条数为__________;

      (2)如图,△ABC中,ABAC,点DAC上,且BDBCAD,求证:BD是△ABC的“内似线”.

      (3)在Rt△ABC中,∠C=90°,AC=4,BC=3,EF分别在边ACBC上,且EF是△ABC的“内似线”,求EF的长.

【详细解析】请点击“进入画板解析



9. (2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AOBC边上的中线,ABAC的“极化值”就等于AO2BO2的值,可记为ABAC=AO2BO2

(1)在图1中,若∠BAC=90°,AB=8,AC=6,AOBC边上的中线,则ABAC=  ,OCOA=  ;

(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求ABACBABC的值;

(3)如图3,在△ABC中,AB=ACAOBC边上的中线,点NAO上,且ON=1/3AO.已知ABAC=14,BNBA=10,求△ABC的面积.

【详细解析】请点击“进入画板解析

10. (2017.宁夏)在边长为2的等边三角形ABC中,PBC边上任意一点,过点P分别作 PMA BPNACMN分别为垂足.

(1)求证:不论点PBC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;

(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值. 

【详细解析】请点击“进入画板解析


11. (2017·陕西)

问题提出(1)如图①△ABC是等边三角形,AB=12.若点O是△ABC的内心,则OA的长为___________;

问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18.如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.

问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水.于是,他主喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌),同时,再合理设计好喷灌龙头喷水的射程就可以了.

    如图③,已测出AB=24m,MB=10m,△ABM的面积为96(m2);过弦AB的中点D作DE⊥AB交弧AB于点E,又测得DE=8m.请你根据以上提供的信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01m)

【详细解析】请点击“进入画板解析


(别忘了给作者一个鼓励,点个赞哦!)

特别说明进入公众号,回复“1,2,3…14,888”中的任意一个”“,可查找到相应资料.


强烈推荐

18年1月11日前发布所有文章分类汇总

18年1月11目至2月8日发布文章分类汇总2018年2月8日至3月6日发布的文章分类汇总2018年3月7日至4月1日发布的最新文章分类汇总

初中数学中考第一轮复习视频(34课时)


《顶尖中考微专题》例、习题视频讲解(共1487分钟)—与书配套视频

《顶尖中考数学微专题》——中考二轮复习

中考复习——各种计算强化训练视频讲解(13份汇总)

2017年中考数学压轴题解析分类汇总

2017年福建九地市九下质检中难题精选

轻松突破中考压轴(手机完整版)


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存