华中农大津田賢一组招植物微生物组、生物信息方向博士后
华中农业大学高层次引进人才津田賢一(Kenichi Tsuda)教授
团队招收多名生物信息学、分子生物学、植物生物学等博士后
• PI简介
津田賢一(Kenichi Tsuda),华中农业大学二级教授,此前在德国马克思-普朗克研究所-植物育种所(Max Planck Institute for Plant Breeding Research)工作。他于1995年-2004年在日本北海道大学获得学士,硕士和博士学位;2005年-2011年在美国明尼苏达大学从事博士后研究;2011年-至今,在德国马克思-普朗克研究所-植物育种所担任Research Group Leader。2019年被华中农业大学以高水平人才引进在植物科学技术学院。
Tsuda博士致力于植物免疫网络结构和动力学的研究,主要以拟南芥为研究对象,研究方向涉及植物病原微生物互作、植物免疫中的激素网络、植物转录重编程、气孔孔径调控、生物胁迫和非生物胁迫相互作用以及MAPK信号通路等许多方面。为了更好理解植物免疫如何影响细菌防御行为,Tsuda 博士建立了一种从感染的病原菌的植物叶中分离细菌mRNA进行RNA-seq 的研究方法,植物与细菌的双重转录组分析有助于全面了解植物与细菌之间的相互作用。至今,Tsuda 博士已在Cell Host & Microbe、Nature Commun、PNAS、Plant Cell、EMBO J 、EMBO Rep、Plos Genet、Annu Rev Plant Biol、Annu Rev Phytopathol、Curr Opin Plant Biol 等期刊发表论文60余篇。其中,近5年聚焦植物病原微生物互作机制研究,发表高水平SCI学术论文32篇,其中通讯及第一作者16篇,Tsuda博士有7篇高被引论文,总他引次数2613次,H影响因子为27。应邀参加国际学术会议83次,其中大会报告或特邀报告12次、分会场主持3次,应邀到全球25个学术机构进行学术交流。
课题组网站:
https://www.mpipz.mpg.de/tsuda
http://cpst.hzau.edu.cn/info/1015/4777.htm
招聘研究方向
(1)了解植物与致病菌和共生细菌以及微生物组相互作用的分子机制。
(2)使用多种遗传资源和基因组学方法了解植物免疫网络复杂性质的分子机制。
(3)利用拟南芥属亲属和天然病原体从进化方面了解植物免疫网络的结构,性质和动态。
招聘者期待
1、 具有或即将获得生物信息学(最好具有转录组或者微生物组的分析背景)、分子生物学、植物学或相近专业博士学位,年龄在35岁以下;
2、 博士期间发表较高水平SCI论文1-2篇以上;
3、 具有较强的英语阅读和写作能力。
4、 责任心强,沟通及表达能力强,具有团队精神。
如何申请?
1、 个人英文简历,其中包括反映本人学术水平的代表性成果;
2、 未来初步研究计划;
3、 如初试合格需提供三位推荐人联系方式。
岗位待遇
在国家和华中农业大学规定的福利待遇的基础上,工资根据应聘者条件确定,课题组对表现优异的提供一定的奖励,年薪在15-20万。课题组和所在团队将提供良好的研究条件,支持申请国家自然科学基金、中国博士后科学基金、博士后国际交流计划等项目。首聘期合同为2年,可延合同至6年,结束后,满足当年学院人才引进标准的博士后可晋升副教授科研岗位。
如有意向了解更多信息可发送邮件至Kenichi Tsuda邮箱:tsuda@mail.hzau.edu.cn
tsuda@mpipz.mpg.de 或联系Kenichi Tsuda博士研究生曹禺:cao@mpipz.mpg.de .
In the group of Kenichi Tsuda at the Huazhong Agricultural University (HZAU)in Wuhan, China, several
Postdoctoral positions in Bioinformatics/Plant Biology/Molecular Biology
will be available immediately.
We seek motivated candidates with a PhD in bioinformatics and/or plant biology (biology). Experiences in plant-microbe interactions are plus but not required.
Applicants should have at least one first author publication, demonstrated creativity, independence, high motivation, and good communication skills.
The candidate will work in one of projects aiming to:
(1) Understand molecular mechanisms underlying the plant interactions with pathogenic and commensal bacteria and microbiota.
(2) Understand molecular mechanisms underlying the complex nature of the plant immune network using a variety of genetic resources and genomics approaches.
(3) Understand plant immune network structures, properties and dynamics with evolutionary aspects using Arabidopsis relatives and natural pathogens.
Please see our website (https://www.mpipz.mpg.de/tsuda ,http://cpst.hzau.edu.cn/info/1015/4777.htm ) or contact Kenichi Tsuda (tsuda@mail.hzau.edu.cn or tsuda@mpipz.mpg.de ) or Tsuda’s group PhD student Yu Cao (cao@mpipz.mpg.de ) by e-mail for details.
Please send your application including (i) a cover letter summarizing your qualifications and your motivation to work on these projects, (ii) a CV with a full publication list, and
(iii) names and contacts of two to three references. The application should be submitted electronically as one file to Prof. Kenichi Tsuda (tsuda@mpipz.mpg.de )
Review of applications will begin immediately and continue until the position is filled.
Selected publications
Wang Y, Garrido-Oter R, Wu J, Winkelmuller TM, Agler M, Colby T, Nobori T, Kemen E, Tsuda K*: Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis. Nature Communications, 10: 2853 (2019)
Nobori T, Tsuda K*: The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 50: 58-66 (2019)
Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T, Nair A, Krüler V, Winkelmüller TM, Wang Y, Mine A, Becker D, Garido-Oter R, Schulze-Lefert P*, Tsuda K*: Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone crosstalk. Proceedings of the National Academy of Sciences USA, 116: 2364-2373 (2019)
Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J*, Tsuda K*: A MPK3/6-WRKY33-ALD1-Pipecolic acid Regulatory Loop Contributes to Systemic Acquired Resistance. Plant Cell, 10: 2480-2494 (2018)
Nobori T, Tsuda K*: In planta Transcriptome Analysis of Pseudomonas syringae. Bio-protocol, 8: 2987 (2018)
Mine A, Seyfferth C, Kracher B, Berens ML, Becker D, Tsuda K*: The Defense Phytohormone Signaling Network Enables Rapid, High-amplitude Transcriptional Reprogramming During Effector-Triggered Immunity. Plant Cell, 30: 1199-1219 (2018)
Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, He SY*, Tsuda K*: Transcriptome landscape of a bacterial pathogen under plant immunity. Proceedings of the National Academy of Sciences USA,115: E3055-E3064 (2018)
Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K*: Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 55: 401-425 (2017)
Mine A, Berens ML, Nobori T, Anver S, Fukumoto K, Winkelmüller TM, Takeda A, Becker D, Tsuda K*: Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity. Proceedings of the National Academy of Sciences USA, 114: 7456-7461 (2017)
Hillmer R, Tsuda K, Rallapalli G, Asai S, Truman W, Papke MD, Sakakibara H, Jone JDG, Myers CL, Katagiri F: The Highly Buffered Arabidopsis Immune Signaling Network Conceals the Functions of its Components. PLoS Genetics, 13: e1006639 (2017)
Mine A, Nobori T†, Salazar-Rondon MC†, Winkelmüller TM, Anver S, Becker D, Tsuda K*: An incoherent feed-forward loop mediates robustness and tunability in a plant immune network. EMBO Reports, 18: 464-476 (2017)
Tsuda K*, Somssich IE*: Transcriptional networks in plant immunity. New Phytologist, 206: 932-947 (2015)
Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H, Myers CL, Katagiri F: Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host & Microbe, 15: 84-94 (2014)
Tsuda K*, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F: Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genetics, 9: e1004015 (2013)
Tsuda K, Qi Y, Nguyen LV, Bethke G, Tsuda Y, Glazebrook J, Katagiri F: An efficient Agrobacterium-mediated transient transformation of Arabidopsis. The Plant Journal, 69: 713-719 (2012)
Tsuda K, Katagiri F: Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology, 13: 459-465 (2010)
Tsuda K, Sato M, Stoddard T, Glazebrook J, Katagiri F: Network properties of robust immunity in plants. PLoS Genetics, 5: e1000772 (2009)
Tsuda K, Sato M, Glazebrook J, Cohen JD, Katagiri F: Interplay between MAMP-triggered and SA-mediated defense responses. The Plant Journal, 53: 763-775 (2008)
猜你喜欢
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑
文献阅读 热心肠 SemanticScholar Geenmedical
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA