查看原文
其他

简单使用DESeq2/EdgeR做差异分析

宏基因组 2023-08-18

DESeq2和EdgeR都可用于做基因差异表达分析,主要也是用于RNA-Seq数据,同样也可以处理类似的ChIP-Seq,shRNA以及质谱数据。

这两个都属于R包,其相同点在于都是对count data数据进行处理,都是基于负二项分布模型。因此会发现,用两者处理同一组数据,最后在相同阈值下筛选出的大部分基因都是一样的,但是有一部分不同应该是由于其估计离散度的不同方法所导致的。 ### DESeq2的使用方法:

  1. 输入矩阵数据,行名为sample,列名为gene;DESeq2不支持无生物学重复的数据,因此我选择了2个样本,3个生物学重复的数据;并对count data取整(经大神指点,这里需要说明下,我的测试数据readcount是RSEM定量的结果,并不是常见的htseq-count的结果,所以count值会有小数点,而DESeq2包不支持count数有小数点,所以这里需要round取整)。

    database_all <- read.table(file = "readcount", sep = "\t", header = T, row.names = 1)
    database <- database_all[,1:6]
    type <- factor(c(rep("LC_1",3), rep("LC_2",3)))
    database <- round(as.matrix(database))
  2. 设置分组信息以及构建dds对象

    condition <- factor(c(rep("LC_1",3), rep("LC_2",3)))
    coldata <- data.frame(row.names = colnames(database), condition)
    dds <- DESeqDataSetFromMatrix(countData=database, colData=coldata, design=~condition)
  3. 使用DESeq函数进行估计离散度,然后进行标准的差异表达分析,得到res对象结果

    dds <- DESeq(dds)
    res <- results(dds)
  4. 最后设定阈值,筛选差异基因,导出数据

    table(res$padj <0.05)
    res <- res[order(res$padj),]
    resdata <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized=TRUE)),by="row.names",sort=FALSE)
    write.csv(resdata,file = "LC_1_vs_LC_2.csv")

EdgeR的使用方法:

  1. 跟DESeq2一样,EdgeR输入矩阵数据,行名为sample,列名为gene;DESeq2不支持无生物学重复的数据,因此我选择了2个样本,3个生物学重复的数据。

    exprSet_all <- read.table(file = "readcount", sep = "\t", header = TRUE, row.names = 1, stringsAsFactors = FALSE)
    exprSet <- exprSet_all[,1:6]
    group_list <- factor(c(rep("LC_1",3), rep("LC_2",3)))
  2. 设置分组信息,去除低表达量的gene以及做TMM标准化

    exprSet <- exprSet[rowSums(cpm(exprSet) > 1) >= 2,]
    exprSet <- DGEList(counts = exprSet, group = group_list)
    exprSet <- calcNormFactors(exprSet)
  3. 使用qCML(quantile-adjusted conditional maximum likelihood)估计离散度(只针对单因素实验设计)

    exprSet <- estimateCommonDisp(exprSet)
    exprSet <- estimateTagwiseDisp(exprSet)
  4. 寻找差异gene(这里的exactTest函数还是基于qCML并且只针对单因素实验设计),然后按照阈值进行筛选即可

    et <- exactTest(exprSet)
    tTag <- topTags(et, n=nrow(exprSet))
    tTag <- as.data.frame(tTag)
    write.csv(tTag,file = "LC_1_vs_LC_2_edgeR.csv")

Summary

以上我主要针对单因素两两比较组进行差异分析,其实DESeq2和EdgeR两个R包都可以对多因素进行差异分析。

  1. DESeq2修改以上代码的分组信息design参数以及在差异分析results函数中添加所选定的分组因素,其他代码基本一样,具体参照DESeq2手册

  2. EdgeR则需要用Cox-Reid profile-adjusted likelihood (CR)方法来估算离散度,y <- estimateDisp(y, design)或者分别使用三个函数(y <- estimateGLMCommonDisp(y, design),y <- estimateGLMTrendedDisp(y, design), )y <- estimateGLMTagwiseDisp(y, design);然后差异表达分析也跟单因素分析不同,主要使用generalized linear model (GLM) likelihood ratio test 或者 quasi-likelihood(QL) F-test,具体代码可以参照EdgeR手册。

http://www.bioinfo-scrounger.com

猜你喜欢

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树

必备技能:提问 搜索  Endnote

文献阅读 热心肠 SemanticScholar Geenmedical

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

在线工具:16S预测培养基 生信绘图

科研经验:云笔记  云协作 公众号

编程模板: Shell  R Perl

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

点击阅读原文,跳转最新文章目录阅读

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存