FEMS:微生物群落生态学数据挖掘的R包microeco
英文原名:microeco: An R package for data mining in microbial community ecology
中文译名:微生物群落生态学数据挖掘的R包microeco
作者:Chi Liu, Yaoming Cui, Xiangzhen Li, Minjie Yao
期刊:FEMS Microbiology Ecology
发表时间:2021.02
通讯作者:姚敏杰 yaomj@fafu.edu.cn
第一单位:福建农林大学资源与环境学院
原文链接:https://doi.org/10.1093/femsec/fiaa255
微生物生态学的快速发展产生了大量的群落数据,特别是随着高通量测序技术的发展,大量基于扩增子测序的微生物群落数据使得快速并灵活的进行统计分析和信息挖掘成了一个难题。通常,基于高通量测序的群落数据分析分为前期的生物信息学分析和后续的统计分析。前期的生信分析由于计算量大,通常依赖于安装有特定软件或系统的服务器。后续的分析则更注重于统计方法的使用和结果展示的快速性和灵活性。目前来看,依然缺少全面、简洁、快速的后续分析软件包。R语言包microeco 基于R6 class开发,整合了多种微生物群落生态学中常用的分析方法,归类成每个模块,以方便学习和使用,并研发了多种分析方法,同时提供了详细的教程,软件包已上传至CRAN,建议安装Github的更新版本。安装方法和使用教程等详见Github链接:https://github.com/ChiLiubio/microeco
。
R microeco包具有如下几个特点:
1. 使用方便,具有全面的文档说明和教程;
2. 高度模块化,容易理解、记忆、查询和使用;
3. 灵活性,提供多种算法和接口,同时中间文件也容易修改;
4. 速度快,一些算法进行了优化;
5. 涵盖广,移植了一些使用难度较大的方法,比如LEfSe、RDA、网络分析、零模型和谱系分析、物种功能分析等。
当前的microeco版本总共有10个模块。包括数据预处理模块microtable、丰度展示模块 trans_abund、维恩图分析模块 trans_venn、alpha多样性模块 trans_alpha、beta多样性模块 trans_beta、差异分析模块 trans_diff、环境因子模块 trans_env、零模型和谱系分析模块 trans_nullmodel、网络分析模块 trans_network 以及功能分析模块 trans_func。各个模块根据经验封装了一系列重要的函数来快速方便有针对性的进行分析。虽然各个模块的代码设计是单独的,但在实际使用时一些模块里的函数可以方便的进行不同模块间的联系,从而使得模块更加简洁清晰,功能明确,同时不缺乏灵活性。包的详细使用方法和示例请参考教程https://chiliubio.github.io/microeco/ 以及包中的help文档。如果由于网络问题打不开教程网址,可以进入github 下载包的ZIP压缩包,解压后打开index.html即可。
使用microeco包最基本的操作是构建microtable object,其它所有类的操作均依赖于此对象,构建此对象与phyloseq包有些相似,但更为简洁,修改也较容易,详见教程。1. 构建microtable对象最基础的方法是使用物种-样本丰度表、物种信息表和样本信息表等来构建;2. 如果前期分析使用的是QIIME2,则可以使用函数直接进行转换,生成microtable对象,参考github README中Read QIIME2 files 部分。
Microeco包目前涵盖了多种常用的分析方法类别,目的是为了快速发掘数据中的有用信息,同时兼顾到易使用性和简洁性。但是有些方法还没有进行移植,例如phyloseq包中的进化树可视化方法。因此microeco包提供了microtable对象与phyloseq对象相互转换的方法,可以使用phyloseq包进行制作,通过使用microeco包中内置函数可以直接转换microtable对象到phyloseq对象,参考‘Conversion between microtable and phyloseq’部分<https:>。目前的microeco版本仍在升级中,后续会增加更多常用分析方法和模块。microeco包的作图方法大多数基于ggplot2,作图数据的下载和作图对象的调整也相对容易。后续方法的升级和调整会根据相关领域的研究进展及时进行更新,也欢迎广大使用者提供建议和帮助,共同使microeco包成为微生物生态学领域的强大工具。有相关问题可联系liuchi0426@126.com 或者yaomj@fafu.edu.cn,或在github里的Issues中留言,或加入qq群277434916 进行交流。
猜你喜欢
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑
文献阅读 热心肠 SemanticScholar Geenmedical
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”