查看原文
其他

Front Cell Neurosci 综述︱小胶质细胞:缺血性脑卒中细胞间通讯的枢纽

廉璐等 逻辑神经科学 2023-03-10

撰文︱廉璐,张云莎,徐士欣

责编︱王思珍


缺血性脑卒(ischemia stroke,IS),多因大脑中动脉栓塞(middle cerebral artery occlusion,MCAO)所致,是全球范围内致残和致死的主要原因之一。小胶质细胞对缺血很敏感,可在IS发病后几分钟内作出快速反应,驱动急性炎症,启动防御和修复机制,维持大脑内环境的稳定。小胶质细胞介导的炎症是IS的病理标志。然而小胶质细胞的功能不局限于免疫反应,它们是IS细胞间通讯的枢纽。小胶质细胞可通过与其他胶质细胞(星形胶质细胞、少突胶质细胞)相互作用,指导神经发生,调节神经功能,促进突触形成,保持血脑屏障的完整性。同时,小胶质细胞可以通过细胞间的相互作用来决定中枢神经系统中细胞群的命运。靶向小胶质细胞在IS治疗中具有重要意义,深入探讨小胶质细胞与中枢驻留细胞和浸润细胞之间的交流,以及这些交流如何影响缺血性卒中的病程,将有助于IS治疗工具的开发和临床应用。

 

2022年04月18日,天津中医药大学第一附属医院徐士欣团队在《细胞神经科学前言》Frontiers in Cellular Neuroscience )上发表了题为“Microglia: the hub of intercellular communication in ischemic stroke”的最新综述文章,阐述了小胶质细胞在缺血性卒中病理中的作用针对小胶质细胞与中枢神经系统其他驻留细胞与浸润细胞间的细胞交流机制以及其在缺血性卒中病程中发挥的作用进行了详细综述,基于此对临床针对小胶质细胞的单靶点与多靶点治疗方式进行展望,以期实现缺血性卒中临床治疗方式的创新与开发。



研 究 进 展





缺血性脑卒中时,小胶质细胞(MG)会发生典型的形态和功能改变。脑卒中后1-3天,MG呈“星形”,6天后呈“阿米巴样”。MG的功能改变主要表现为促炎M1表型和抗炎M2表型。M1-小胶质细胞(M1-MG)分泌TNF-α、IL-1β、NO等促炎细胞因子,加重炎症和组织损伤。M2-小胶质细胞(M2- MG)分泌TGF-β、IL-4、IL-10等抗炎细胞因子和血管内皮生长因子(VEGF)、脑源性神经营养因子(BDNF)、血小板源性生长因子(PDGF)等生长因子,抑制炎症,促进组织恢复[1]

 

MG在IS中发挥神经损伤及神经保护作用,这与其功能表型有关。研究表明,IS后6h即可在缺血半暗带检测到M1-MG,24h后逐渐向缺血半暗带和梗死核心区扩展。由M1-MG引起的急性炎症可清除细胞碎片并限制梗死灶的扩大。M2-MG激活是调节炎症反应的关键,对伤口愈合和炎症抑制至关重要。研究发现,在IS急性期,M2-MG的特征性标志物CD206和Ym1在缺血核心区表达,两种标记物分别在IS后6h或12h被检测到,并在24h左右达到峰值。然而,在未来2周内,在核心区域占主导地位的M2-MG将逐渐转向M1-MG。M1-MG发展为一种高度促氧化的表型,促进了脑内急性炎症向慢性炎症的转变,加重神经元的死亡。

 

除了调节神经炎症,MG还参与中风的其他病理事件,如星形胶质细胞的激活、血脑屏障的改变、再髓鞘化和外周免疫细胞反应。而MG与众多细胞之间的沟通与MG的促炎表型和抗炎表型密切相关。


一、小胶质细胞和大脑常驻细胞之间的通迅



IS发病过程中神经血管单位(NVU)发挥重要作用,MG作为关键的免疫前哨细胞,与NUV中的其他成分相互作用,形成一个复杂的网络,参与IS的进展(图1)


图1 小胶质细胞与神经系统驻留细胞的双向交流

(图源:Yunsha Zhang et al.,Front in Cell Neurosci, 2022)

 

1、神经元

MG-神经元的双向沟通机制涉及直接或间接细胞通讯。化的MG通过吞噬作用限制凋亡或应激神经元引起的继发性神经元损伤。此外,活化的MG增加了含有促炎或抗炎细胞因子和miRNAs的基质外囊泡(EVs)的脱落,从而促进或抑制神经受损。受损的神经元不仅仅是小胶质细胞的被动目标,通过不同的信号调节MG的活动神经元释放“eat me”或“don’t eat me”信号来调节MG的吞噬作用。受损神经元还调节MG的极化。受损的神经元可以通过Lipocalin-2激活MG,使其具有潜在的促修复表型[2]。另外,缺血应激下受损神经元可释放IL-4,通过增强MG的IL-4受体表达,促进MG向M2表型极化。在体外,原代神经元释放的VEGF添加到MG培养中,可部分改变M2-MG标志物[3]。相反的结果显示,缺血神经元通过释放可溶性FasL,激活JAK2/STAT3和NF-κB信号通路促进M1-MG极化[4];划痕损伤的神经元衍生的含有miR-21-5p的外泌体可诱导M1-MG极化[5]

 

2、星形胶质细胞

IS发生后,激活的星形胶质细胞呈现出与小胶质细胞类似的功能表型,促炎表型A1和抗炎表型A2。越来越多的证据表明,MG-星形细胞串扰是中枢神经系统疾病中神经功能障碍的基础。MG通常比星形胶质细胞对病理刺激反应更快,诱导星形胶质细胞激活并决定星形胶质细胞的命运激活MG分泌IL-1α、TNF-α和C1q以诱导A1星形胶质细胞。而A1星形胶质细胞诱导神经元和少突胶质细胞的死亡。TNF-α依赖的自分泌/旁分泌信号通路通过SDF1α-CXCR4信号通路导致星形胶质细胞释放谷氨酸[6]MG还可诱导星形胶质细胞的神经保护表型(A2),减少卒中后炎症反应。M2-MG来源的富含miR-124的EVs可抑制星形胶质细胞增殖,从而减少脑卒中后瘢痕的形成,促进脑卒中后的恢复[7]。同时,星形胶质细胞通过其分泌的分子调节MG的表型和功能。体外研究表明,TNF-α诱导星形胶质细胞释放CCL2刺激MG向M1极化方向转化,增强MG的迁移能力[8]。星形胶质细胞也可以产生大量的IL-17A,通过IL-17A受体的信号通路,促进MG极化至M1表型[9]。星形胶质细胞来源的含有miR-873a-5p的外泌体可通过降低细胞外调节蛋白激酶(ERK)和NF-κB/p65的磷酸化水平,显著抑制LPS诱导的M1-MG表型转化和随后的炎症反应[10]。使用星形胶质细胞培养条件培养基(ACM)处理MG,发现ACM通过诱导hemeoxygenase-1的表达抑制由IFN-γ诱导的MG炎症反应[11]。此外,活化的MG产生IL-10刺激星形胶质细胞分泌TGF-β,减弱MG[12]的激活,形成负反馈回路。

 

3、少突胶质细胞

少突胶质细胞(OLs)是中枢神经系统髓鞘形成的独特细胞类型。动脉闭塞后30分钟发生OLs肿胀,缺血3小时后大量OLs死亡,在缺血区出现早于神经元死亡。髓鞘的缺失会损害轴突的存活,因此需要新的少突胶质细胞祖细胞(OPCs)进行再髓鞘形成。脑卒中及实验性缺血可诱导OPCs增殖分化。然而,这些OPCs大多未能发展成成熟的OLs,导致再髓鞘化不足。MG的激活可调节髓鞘再生M1-MG产生的促炎因子导致OLs死亡,如TNF-α和IFN-γ诱导OLs凋亡,抑制OPC增殖和分化[13]。而IL-13或IL-10激活的MG可增强OPCs的生长和分化[14]。最近的研究表明,MG产生的TGF-α通过STAT3信号通路对OLs有保护作用[15]。Xie D等研究发现IL-33处理的MG可保护OLs和OPCs抵抗中风[16]。此外,保护性MG来源的EVs可促进OPCs的成熟,从而改善神经功能[17]MG活化的抑制剂Minocycline可减轻新生儿大鼠在高氧和缺血缺氧条件下的OLs/OPCs损伤[18]

 

4、微血管内皮细胞

血脑屏障(BBB)破坏是IS发病过程中的主要病理标志。血管发生炎症时,EC可产生多种因子调节小胶质细胞功能CXCL5的药理抑制显著降低了MG的激活。MMP-3是另一种EC源性因子,可在脊髓损伤后诱导MG激活。此外,EC表达的VEGF通过下调清道夫受体A抑制MG的促炎反应,在IS中发挥神经保护作用[19]。然而,静息性EC可抑制MG的活化,发挥免疫抑制作用[20]。同样,激活的MG也会影响血脑屏障的完整性。体内研究表明,血管周围MG可直接向内皮细胞提供紧密连接蛋白(TJP)claudin-5,并与EC接触以维持血脑屏障的完整性。而持续的神经炎症会激活MG,通过吞噬星形胶质细胞足突损害BBB。在MG和EC共培养系统中,LPS刺激的MG可通过释放TNF-α、IL-1β、IL-1α和MIP-1α诱导血脑屏障崩溃[21]。此外,MG分泌的TNF-α也可诱导EC坏死,导致IS血脑屏障的破坏[22]。另外,MG分泌的IL-1β可诱导TJP ZO-1/occluding下调,增大BBB通透性[23]。而外周免疫细胞可通过M1-MG分泌的趋化因子(如CCL2、CXCL10)进入脑实质,产生活性氧,从而加剧血脑屏障损伤[20,24]。最近,Xie L等报道了氧糖剥夺后的MG释放含miR-424-5p的外泌体,引起EC细胞损伤;抑制miR-424-5p可显著减轻MCAO诱导的神经功能障碍和内皮细胞损伤[25]

 

二、MG与中枢神经系统浸润细胞之间的通讯



IS发生后,外周免疫细胞陆续浸润到缺血半球。MG可调节外周免疫细胞的募集、渗出和功能。相反,浸润的外周免疫细胞也会影响MG的功能。MG与脑内浸润细胞之间的通讯如图2所示。


图2 小胶质细胞与外周免疫细胞的双向交流

(图源:Yunsha Zhang et al.,Front in Cell Neurosci, 2022)

 

1、中性粒细胞

中性粒细胞最先达到脑组织,卒中后一小时内即可被检测到,3h后显著增加,24h后达到峰值,7d后稳定消散。中性粒细胞在血管中时即可发挥有害作用,浸润到脑组织后则损伤神经元扩大梗死灶。有证据表明,小胶质细胞可吞噬凋亡及存活的中性粒细胞来消除其神经毒性[26]中性粒细胞N2极化促进中性粒细胞被MG/巨噬细胞吞噬,减轻脑水肿和梗死程度[27]

 

2、NK细胞

脑卒中患者2-5天时,缺血脑半球中的NK细胞数量高于非缺血脑半球。动物实验显示,梗死区NK细胞的浸润在缺血后12h达到最高水平。此外,动力学实验表明,NK细胞早在tMCAO后3小时就在大脑中积累,并在第3天达到峰值。NK细胞的趋化和向脑内浸润可能与MG有关。在IS过程中,MG被激活,释放大量的IP-10。NK细胞通过IP-10/CXCR3和CX3CL1/CX3CR1轴向缺血区募集[28]。此外,NK细胞也通过MG产生的趋化因子如CCL2和CXCL10被招募到CNS[29]NK细胞通过杀死MG来控制中枢神经系统炎症。NK细胞通过NKG2D-和NKp46介导的识别杀死静止的MG[30]MG也会影响NK细胞的功能。MG来源的IL-15可促进NK细胞的水平和活化,从而增强IS中血脑屏障的破坏[31]

 

3、单核细胞/巨噬细胞

IS发生后24h左右外周单核细胞浸润病灶,3-7天达到高峰,然后逐渐减少,但28天左右,梗死核心区仍有单核源性巨噬细胞(MDMs)存在[32]在tMCAO 中,MDMs出现在梗死灶周围及核心区域,而在pMCAO中,MDMs则主要集中在核心区。浸润的MDMs影响驻留的MG的行为。光化学诱导脑缺血脑卒后,Cxcr4 cKO小鼠单核细胞浸润减少,与MG增殖减少相关,提示MDMs可能促进MG的再生。RNA-seq表明,MG活化的介质,如IL-1β,主要是由MDMs提供的。此外,对MG差异表达基因(DEGs)的GO富集分析表明,与MG活化相关的基因是过表达的而参与细胞内稳态代谢的基因被下调。此外,巨噬细胞的消耗降低了同侧皮质和纹状体中MG的激活,从而促进MCAO后的神经恢复[33]。LPS刺激巨噬细胞产生的外泌体表现出抗炎和神经保护作用,调节MG从M1向M2的转化[34]。并且巨噬细胞可抑制MG中的炎症级联反应。MG与MDMs的吞噬功能是相互作用的共培养体系中,噬细胞抑制MG对髓磷脂的摄取,但MG的存在却增强了巨噬细胞对髓磷脂的摄取。由此看出两种细胞之间存在直接沟通,调控对方的吞噬能力[35]

 

4、T细胞

在动物模型中,T细胞作为外周免疫系统中最显著的效应淋巴细胞,早在MCAO后24h就出现在脑实质中,分别在tMCAO和pMCAO后3-5d和7d达到峰值。T细胞活性在实验脑卒中后至少持续1个月,在IS患者中,T细胞数量的增加可持续3个月。

 

T细胞在缺血大脑中扮演不同的角色,与功能亚型相关。T细胞分为αβ和γδ亚群。αβ亚群又分为CD8+T淋巴细胞(CTL)、CD4+T辅助细胞(Th)和调节性T细胞(Treg)3个亚型。CTL可能早在中风发作后3h就被招募,然后通过直接或间接杀死靶细胞而加重脑损伤。梗死边缘区存在γδT细胞,其数量在IS后第1天至第6天增加,第3天达到峰值。缺血半暗带内还可见少量双阴性T细胞(CD3+CD4-CD8-T)。Th细胞根据其细胞因子分泌谱在功能上可分为Th1、Th2和Th17细胞。

 

Th1/Th17  在IS后24h内,Th1细胞开始浸润脑膜,7d时在梗死周围和梗死区出现大量Th1细胞浸润。Th1细胞与M1-MG一起产生高水平的促炎细胞因子、iNOS和神经毒性物质,诱导炎症反应,加速IS后的脑损伤。研究表明,Th1细胞可产生可溶性细胞因子如IFN-γ,使MG表型转变为M1型,从而增加继发性缺血损伤[36]。M1-MG还表达趋化因子如CXCL9和CXCL10,这些趋化因子招募Th1细胞进行炎症反应[37]与Th1细胞一样,Th17细胞与M1-MG细胞相互作用,发挥促炎作用[38]Th17细胞可通过选择性IL17促进MG向M1表型极化,从而放大炎症作用[39]。而M1-MG通过分泌IL-6和IL-23诱导Th17细胞分化,从而共同促进免疫应答[40]

 

Th2  在IS发生24小时后,脑膜附近出现Th2细胞。Torres等人认为Th2仅在细胞因子IL-12或IL-4的刺激下产生内源性产生IFN-γ和IL-4[41]。研究表明,M2巨噬细胞分泌的细胞因子刺激Th2细胞产生高水平的IL-4和IL-10,进而促进M2-MG极化[42]。同时,M2-MG通过分泌IL-4、CCL17、CCL22和CCL24等因子,促进Th2细胞的募集和极化,从而增强2型反应,对卒中后炎症具有抑制作用[43]

 

Treg  IS发生后的第一周,梗死区及其周围的Treg数量增加,并在2个月内保持较高水平。Treg在IS中发挥着双刃剑的作用,但以神经保护作用为主。Treg可通过分泌IL-10和TGF-β,调节脑缺血时小胶质/巨噬细胞向M2型极化,从而保护大脑免受继发性损伤[44]。此外,Treg通过分泌骨桥蛋白促进MG介导的组织修复[45]。反过来,M2-MG还可以促进Treg的分化,缓解神经炎症[46]

 

5、B细胞 

急性缺血性中风患者外周血淋巴细胞中B细胞的比例显著增加,持续时间长达3个月。而B细胞渗透到缺血的大脑需要几个星期。迟发性浸润提示B细胞可能在脑卒中慢性期起重要作用。来自人类和小鼠的活化B细胞已被证明可以产生神经营养生长因子,如BDNF,以促进中枢神经系统损伤期间神经元群体的生存和分化。此外,BDNF可促进MG增殖。然而,由于脑内有多种细胞来源的BDNF,B细胞来源BDNF对体内MG增殖的作用尚不明确。B细胞可影响MG的功能。μMT−/−小鼠B细胞的缺失进一步导致MCAO小鼠同侧半球MG的绝对数量显著增加[47]。MG也能影响B细胞。MG可能通过CXCL13的产生促进B细胞浸润[48],而CXCL13是B细胞归巢的一种特异性趋化因子。

 

6、树突状细胞

树突状细胞检测并积累外来抗原,并将抗原呈递给初始T细胞。MCAO后24h,DCs开始出现在缺血半球,并在梗死灶周围形成簇状聚集。MCAO后72h时,梗死核心及边界处均可见DC,但核心处细胞呈卵圆形,梗死边界处细胞呈分支状。研究表明,脑缺血/再灌注后MG可转化为DC样表型,表达DC表面标志物CD11c,MG在体外可转化为DC样表型。IFN-γ/c-myc/ERK信号通路调控MG向DC样细胞的转化[49]。此外,Santambrogio等人认为MG可能是未成熟树突状细胞的髓系祖细胞[50]其他研究人员则认为这些DC样表型最有可能是MG的亚群。基于目前的研究结果,外周树突状细胞与MG之间的关系仍需要研究人员探讨。

 

总 结 与 展 望





近年来,随着MG在各种中枢神经系统疾病中的作用越来越重要,人们对MG的兴趣也越来越浓厚。MG在不同刺激条件下表现出多样性和异质性。多组学技术和单细胞RNA测序的应用,让人们认识了除M1/M2群体之外的其他MG群体,如DAM、LDAM、PAM和GAM。然而,这些异质性的差异是否会影响MG在IS发展中的作用还有待进一步研究。

 

MG作为中枢神经系统的免疫前哨细胞,在缺血性损伤时被优先激活并吞噬受损神经元或细胞碎片。此外,激活的MG与其他神经系统驻留细胞,如神经元、星形胶质细胞和微血管内皮细胞直接或间接地相互交谈。这些细胞相互作用,或者进一步形成反馈回路,参与中风病理事件。众多的细胞信号参与了细胞间对话,值得一提的是,细胞外囊泡在其对话中的作用越来越受到关注。卒中后炎症信号的级联反应导致血脑屏障的破坏,随后外周免疫细胞大量浸润,参与缺血性脑损伤的继发性进展。MG一方面监测这些浸润性免疫细胞,另一方面,MG的活动和功能也被这些细胞重塑。

 

综上所述,以MG为中心的细胞间通讯在IS发生过程中发挥了神经保护或神经毒性作用。这种双重作用与细胞的功能亚型和中风病程的发展阶段有关。由于MG可能是许多细胞信号的整合者,针对MG功能的治疗策略可能发展成为未来的卒中辅助治疗。然而,到目前为止,MG整体抑制策略(minocycline,PLX3397)从动物模型到人体的转化还没有产生积极的结果。因此,未来的治疗策略或可靶向特定的MG亚群或功能,或通过其他细胞间接调节MG功能。基于临床转化试验的结果,多靶点神经保护剂的研究应成为今后脑卒中治疗研究的热点。




原文链接:https://www.frontiersin.org/articles/10.3389/fncel.2022.889442/full

 

天津中医药大学中西医结合学院张云莎副教授与天津中医药大学第一附属医院博士研究生廉璐为共同第一作者,硕士研究生付榕、刘珏伶、单晓倩,中西医结合学院教师靳杨对本文作出了重要贡献。徐士欣副教授为本论文的通讯作者。该研究得到了国家自然科学基金(No. 81774059)、天津市自然科学基金(No.19JCZDJC37100)、天津中医药大学中西医结合学院基金(No.ZXYKYQDLX202001)资助。


通讯作者徐士欣(左);共同作者张云莎(中)、廉璐(右)。

(照片提供自:天津中医药大学第一附属医院徐士欣团队)


论文参与者:付榕、刘珏伶、单晓倩、靳杨(从左到右)。

(照片提供自:天津中医药大学第一附属医院徐士欣团队)

 

人才招聘

【1】“ 逻辑神经科学 ”诚聘副主编/编辑/运营岗位 ( 在线办公)

往期文章精选

【1】Trends Neurosci 综述︱生物钟与血糖昼夜代谢节律研究进展

【2】Front Aging Neurosci︱孙涛课题组提出11C-PiB-PET成像新协议用于早期诊断阿尔兹海默症

【3】Front Aging Neurosci 综述︱星形胶质细胞在脑缺血后神经血管单元中的双刃剑作用

【4】HBM︱基于区域的大脑核磁共振影像空间标准化方法,实现脑区的精确配准

【5】J Neuroinflammation︱彭英课题组揭示小胶质细胞线粒体自噬在吗啡所致中枢神经系统炎性抑制中的调控作用

【6】Curr Biol︱灵长类大脑中新颖性检测和惊奇与新近性的关系

【7】Neurosci Bull︱钱令嘉课题组揭示同型半胱氨酸在慢性应激过程中通过调控DNA甲基化修饰影响认知功能

【8】Front Aging Neurosci︱马涛团队揭示中药复方多途径多靶点改善阿尔茨海默病能量代谢的作用机制

【9】Aging Cell︱高旭团队发现良好的睡眠质量可以延缓空气污染导致的衰老加速

【10】Autophagy︱沈汉明课题组揭示自噬相关蛋白WIPI2调控线粒体外膜蛋白降解及线粒体自噬的新机制

优质科研培训课程推荐

【1】膜片钳与光遗传及钙成像技术研讨会 5月14-15日 腾讯会议

【2】科研技能︱第四届近红外脑功能数据分析班(线上:2022.4.18~4.30)

参考文献(上下滑动阅读)  



1. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T: Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci 2017, 18.

2. Xing C, Wang X, Cheng C, Montaner J, Mandeville E, Leung W, van Leyen K, Lok J, Wang X, Lo EH: Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 2014, 45:2085-2092.

3. Esposito E, Hayakawa K, Ahn BJ, Chan SJ, Xing C, Liang AC, Kim KW, Arai K, Lo EH: Effects of ischemic post-conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J Neurochem 2018, 146:160-172.

4. Meng HL, Li XX, Chen YT, Yu LJ, Zhang H, Lao JM, Zhang X, Xu Y: Neuronal Soluble Fas Ligand Drives M1-Microglia Polarization after Cerebral Ischemia. CNS Neurosci Ther 2016, 22:771-781.

5. Yin Z, Han Z, Hu T, Zhang S, Ge X, Huang S, Wang L, Yu J, Li W, Wang Y, et al: Neuron-derived exosomes with high miR-21-5p expression promoted polarization of M1 microglia in culture. Brain Behav Immun 2020, 83:270-282.

6. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A: CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001, 4:702-710.

7. Li Z, Song Y, He T, Wen R, Li Y, Chen T, Huang S, Wang Y, Tang Y, Shen F, et al: M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 2021, 11:1232-1248.

8. He M, Dong H, Huang Y, Lu S, Zhang S, Qian Y, Jin W: Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells. Cell Physiol Biochem 2016, 38:859-870.

9. Dai Q, Li S, Liu T, Zheng J, Han S, Qu A, Li J: Interleukin-17A-mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke. J Cell Biochem 2019.

10. Long X, Yao X, Jiang Q, Yang Y, He X, Tian W, Zhao K, Zhang H: Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 2020, 17:89.

11. Min KJ, Yang MS, Kim SU, Jou I, Joe EH: Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci 2006, 26:1880-1887.

12. Norden DM, Fenn AM, Dugan A, Godbout JP: TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 2014, 62:881-895.

13. Chew LJ, King WC, Kennedy A, Gallo V: Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia 2005, 52:127-143.

14. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C: M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013, 16:1211-1218.

15. Dai X, Chen J, Xu F, Zhao J, Cai W, Sun Z, Hitchens TK, Foley LM, Leak RK, Chen J, Hu X: TGFalpha preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J Cereb Blood Flow Metab 2020, 40:639-655.

16. Xie D, Liu H, Xu F, Su W, Ye Q, Yu F, Austin TJ, Chen J, Hu X: IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) Axis Drives Protective Microglial Responses and Promotes White Matter Integrity After Stroke. Stroke 2021, 52:2150-2161.

17. Raffaele S, Gelosa P, Bonfanti E, Lombardi M, Castiglioni L, Cimino M, Sironi L, Abbracchio MP, Verderio C, Fumagalli M: Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Mol Ther 2021, 29:1439-1458.

18. Schmitz T, Krabbe G, Weikert G, Scheuer T, Matheus F, Wang Y, Mueller S, Kettenmann H, Matyash V, Buhrer C, Endesfelder S: Minocycline protects the immature white matter against hyperoxia. Exp Neurol 2014, 254:153-165.

19. Xu Z, Han K, Chen J, Wang C, Dong Y, Yu M, Bai R, Huang C, Hou L: Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia. J Neurochem 2017, 142:700-709.

20. Thurgur H, Pinteaux E: Microglia in the Neurovascular Unit: Blood-Brain Barrier-microglia Interactions After Central Nervous System Disorders. Neuroscience 2019, 405:55-67.

21. Shigemoto-Mogami Y, Hoshikawa K, Sato K: Activated Microglia Disrupt the Blood-Brain Barrier and Induce Chemokines and Cytokines in a Rat in vitro Model. Front Cell Neurosci 2018, 12:494.

22. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, et al: Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 2019, 10:487.

23. Kangwantas K, Pinteaux E, Penny J: The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 2016, 13:25.

24. Ronaldson PT, Davis TP: Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020, 40:S6-S24.

25. Xie L, Zhao H, Wang Y, Chen Z: Exosomal shuttled miR-424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway. Exp Neurol 2020, 333:113411.

26. Neumann J, Sauerzweig S, Ronicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M, Reymann KG: Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 2008, 28:5965-5975.

27. Garcia-Culebras A, Duran-Laforet V, Pena-Martinez C, Moraga A, Ballesteros I, Cuartero MI, de la Parra J, Palma-Tortosa S, Hidalgo A, Corbi AL, et al: Role of TLR4 (Toll-Like Receptor 4) in N1/N2 Neutrophil Programming After Stroke. Stroke 2019, 50:2922-2932.

28. Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, Wang J, Liu Y, Kong Q, Liu X, et al: Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014, 11:79.

29. Earls RH, Lee JK: The role of natural killer cells in Parkinson's disease. Exp Mol Med 2020, 52:1517-1525.

30. Anna Lünemann JDL, Susanne Roberts, Brady Messmer, Rosa Barreira da Silva, Cedric S. Raine, and Christian Münz: Human NK cells kill resting but not activated microglia via NKG2D and NKp46 mediated recognition. J Immunol 2008, 181:8.

31. Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY, Liao NS: Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018, 73:562-570.

32. Garcia-Bonilla L, Faraco G, Moore J, Murphy M, Racchumi G, Srinivasan J, Brea D, Iadecola C, Anrather J: Spatio-temporal profile, phenotypic diversity, and fate of recruited monocytes into the post-ischemic brain. J Neuroinflammation 2016, 13:285.

33. Ma Y, Li Y, Jiang L, Wang L, Jiang Z, Wang Y, Zhang Z, Yang GY: Macrophage depletion reduced brain injury following middle cerebral artery occlusion in mice. J Neuroinflammation 2016, 13:38.

34. Zheng Y, He R, Wang P, Shi Y, Zhao L, Liang J: Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomater Sci 2019, 7:2037-2049.

35. Greenhalgh AD, Zarruk JG, Healy LM, Baskar Jesudasan SJ, Jhelum P, Salmon CK, Formanek A, Russo MV, Antel JP, McGavern DB, et al: Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biol 2018, 16:e2005264.

36. Chabot S, Charlet D, Wilson TL, Yong VW: Cytokine production consequent to T cell--microglia interaction: the PMA/IFN gamma-treated U937 cells display similarities to human microglia. J Neurosci Methods 2001, 105:111-120.

37. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677-686.

38. Klebe D, McBride D, Flores JJ, Zhang JH, Tang J: Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. J Neuroimmune Pharmacol 2015, 10:576-586.

39. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B: Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 2007, 8:1086-1094.

40. Wang M, Zhong D, Zheng Y, Li H, Chen H, Ma S, Sun Y, Yan W, Li G: Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor. Neuroscience 2015, 289:406-416.

41. Torres KC, Dutra WO, Gollob KJ: Endogenous IL-4 and IFN-gamma are essential for expression of Th2, but not Th1 cytokine message during the early differentiation of human CD4+ T helper cells. Hum Immunol 2004, 65:1328-1335.

42. Zhao J, Wang L, Li Y: Electroacupuncture alleviates the inflammatory response via effects on M1 and M2 macrophages after spinal cord injury. Acupunct Med 2017, 35:224-230.

43. Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010, 11:889-896.

44. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, Zhao Y: Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol Cell Biol 2011, 89:130-142.

45. Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM, et al: Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 2021, 54:1527-1542 e1528.

46. Shu L, Xu CQ, Yan ZY, Yan Y, Jiang SZ, Wang YR: Post-Stroke Microglia Induce Sirtuin2 Expression to Suppress the Anti-inflammatory Function of Infiltrating Regulatory T Cells. Inflammation 2019, 42:1968-1979.

47. Ren X, Akiyoshi K, Dziennis S, Vandenbark AA, Herson PS, Hurn PD, Offner H: Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 2011, 31:8556-8563.

48. Berchtold D, Priller J, Meisel C, Meisel A: Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 2020, 30:1208-1218.

49. Zhang H, Zhang T, Wang D, Jiang Y, Guo T, Zhang Y, Zhu F, Han K, Mu L, Wang G: IFN-gamma regulates the transformation of microglia into dendritic-like cells via the ERK/c-myc signaling pathway during cerebral ischemia/reperfusion in mice. Neurochem Int 2020, 141:104860.

50. Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi-Castagnoli P, Stern LJ, Strominger JL, Riese R: Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 2001, 98:6295-6300.


制版︱王思珍


本文完

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存