J Neuroinflammation 综述︱倪文飞/周凯亮团队聚焦STING通路在CNS损伤后神经炎症及细胞死亡中的重要作用
编辑︱夏 叶
中枢神经系统(Central Nervous System,CNS)损伤是指脑和脊髓受到外部因素的损伤,主要包括创伤性脑损伤(TBI)、脊髓损伤(SCI)、蛛网膜下腔出血(SAH)和缺氧缺血性脑病(HIE)等[1–4]。由于神经细胞的修复及再生能力较差,受到损伤后往往导致严重的后遗症,给患者家庭以及社会带来沉重的负担[5]。然而目前针对CNS损伤的治疗未能获得满意的效果,因此寻找有效的治疗靶点以及治疗方案具有重要的现实意义。先天免疫反应是修复受损组织以及宿主抵御感染所必需的,并协调受伤组织的愈合,在CNS损伤中起着重要作用[6]。中枢神经系统损伤通常在损伤瞬间已经发生,但是继发性损伤后炎症微环境和不可控的细胞死亡会进一步加重损伤[7]。因此,控制神经炎症和抑制细胞死亡对于CNS的生理功能以及损伤后修复至关重要。
干扰素基因刺激因子(Stimulator of Interferon Genes,STING)作为众多信号通路中的一个中枢免疫分子,通常以二聚体的形式处于自我抑制状态,受上游信号刺激后发生蛋白构型改变,进而被活化,继而引起下游一系列免疫细胞及炎症因子的活化与产生,从而促进机体内炎症反应的发生,并产生相应的临床症状[8]。研究表明,STING通路参与到CNS损伤后的炎症反应和神经细胞死亡过程中。因此,调节cGAS-STING信号通路成为了CNS治疗与损伤后再生修复研究的前沿热点。
2022年10月04日,温州医科大学附属第二医院/浙江省骨科重点实验室倪文飞和周凯亮团队在Journal of Neuroinflammation发表了综述“Emerging role of STING signalling in CNS injury: infammation, autophagy, necroptosis, ferroptosis and pyroptosis”,第一作者为胡新力(Xinli Hu)博士和张豪杰(Haojie Zhang)硕士,通讯作者为倪文飞(Wenfei Ni)主任医师和周凯亮(Kailiang Zhou)副研究员。本文系统总结了STING异常激活促进炎症和细胞死亡在CNS损伤研究的前沿进展,此外综述了STING信号在CNS损伤过程中参与程序性细胞死亡[细胞自噬(Autophagy)、细胞焦亡(Pyroptosis)、细胞铁死亡(Ferroptosis)和细胞坏死性凋亡(Necroptosis)]的最新进展。在此基础上,对潜在药物调控cGAS-STING信号通路在CNS损伤上做出了总结和展望,为CNS损伤的治疗提供新的思路。
cGAS(环状GMP-AMP合成酶)识别细胞质内的双链DNA后,可催化GTP和ATP合成环状GMP-AMP(cGAMP)[9]。cGAMP结合并激活内质网蛋白STING,促使STING易位到高尔基体,随后STING可激活下游的TBK1以及磷酸化转录因子IRF3,胞质IRF3二聚体在磷酸化后进入细胞核,导致IRF3靶基因转录的诱导和I型干扰素的释放,促进炎症的发生[10](图1)。
图1 cGAS-STING信号通路
(图源:Hu XL et al, J Neuroinflammation, 2022)
在包括创伤性脑损伤(TBI)、脊髓损伤(SCI)、蛛网膜下腔出血(SAH)和缺氧缺血性脑病(HIE)等CNS损伤疾病中,均发现了cGAS-STING信号通路过度激活能介导炎症的过表达以及神经细胞的程序性死亡。过度激活的炎症和无法有效抑制的细胞死亡被认为是CNS损伤中的核心问题之一,如何抑制过度的炎症激活以及细胞程序性死亡是治疗的核心步骤。本综述总结了不同类型的CNS损伤中STING的激活情况,并重点讨论了目前的最新研究进展。
三、 cGAS-STING信号通路与程序性细胞死亡
(一) cGAS-STING与细胞自噬细胞自噬过程包括五个阶段:诱导阶段-成核-延伸-细胞自噬体形成-裂解[11]。cGAS-STING激活可以启动细胞自噬,细胞自噬开始后,cGAS-STING泛素化并结合p62,然后被包装成细胞自噬体,并与溶酶体结合形成自噬溶酶体、消化自噬底物,最终完成细胞自噬的整个过程(图2)。
(二) cGAS-STING与细胞坏死性凋亡
cGAS-STING信号通路的激活可以介导细胞坏死性凋亡[12]。细胞质内DNA可以激活cGAS-STING信号通路导致IFN和TNF的产生。TNF与TNFR1的结合导致RIPK1/RIPK3激活,在Caspase-8被抑制时情况下。RIPK1/RIPK3可以磷酸化MLKL导致细胞坏死性凋亡。此外,IFN的过表达可以上调RIPK3和MLKL(图3)。(三) cGAS-STING与细胞铁死亡
图4 cGAS-STING与细胞铁死亡
(图源:Hu XL et al, J Neuroinflammation, 2022)
图5 cGAS-STING与细胞焦亡
(图源:Hu XL et al, J Neuroinflammation, 2022)
cGAS-STING信号通路引起的无菌炎症和细胞死亡在CNS损伤中起着重要作用。cGAS-STING途径的抑制剂可能是CNS损伤治疗的潜在靶点。cGAS,通过识别细胞死亡后细胞质中DNA催化cGAMP的产生。随后cGAMP向下游STING传递信号, STING易位到高尔基体上激活下游的TBK1以及磷酸化转录因子IRF3,胞质IRF3二聚体在磷酸化后进入细胞核,导致IRF3靶基因转录的诱导和I型干扰素的释放。这个过程可以激活先天免疫反应[16]。故细胞质中的DNA是cGAS-STING激活的重要因素,因此可通过减少细胞质中的DNA和抑制cGAS和STING来起到抑制cGAS-STING信号通路的作用。既往有诸多药物已被证明在对cGAS–STING信号通路具有抑制作用,并为与相关疾病提供来的可行治疗方法(表1)[17-20]。然而在CNS损伤领域中针对抑制cGAS-STING通路的治疗效果还需更多的研究。
表1 cGAS-STING信号通路的抑制剂
(表源:Hu XL et al, J Neuroinflammation, 2022)
过度的炎症反应以及不可有效控制的神经细胞死亡在CNS损伤中扮演着重要作用。STING信号通路作为近年来新发现的通路在调控神经炎症和细胞死亡上具有十分重要的作用。目前关于cGAS-STING信号通路在CNS损伤上的研究文献日益增多,急需全面总结cGAS-STING信号通路对于CNS损伤的作用,为后续研究打下坚实的基础。因此,本综述目的是概述cGAS-STING信号通路在CNS损伤中的研究进展;并探讨了cGAS-STING信号通路与程序性细胞死亡之间的联系;最后总结了对以cGAS-STING信号通路作为靶点缓解神经炎症和细胞死亡的可能方法和策略,旨在为CNS损伤提供新的思路。
原文链接:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531511/
国家自然科学基金面上项目(8207219),浙江省公益技术项目(LGF20H150003),浙江省自然科学基金(LY17H060009,Y21H060050),温州市科技局基金资助项目(Y20210438)。
第一作者:胡新力博士(左一)、张豪杰硕士(左二);通讯作者:周凯亮副研究员(右二)、倪文飞主任医师(右一)。
(照片提供自:周凯亮/倪文飞团队)
【1】Sci Adv︱盛能印/毛炳宇/丁玉强团队合作发现AMPA受体泛素化在兴奋性突触功能调控中的新机制
【2】Brain︱刘刚/胡庆茂团队揭示辅助运动区在眼睑痉挛患者全脑结构网络改变中的驱动作用
【3】FASEB J︱刘阳团队发现在实验动物上抗精神病药物导致造血器官的血管异常
【4】Science︱杜洋团队等合作开发靶向肾上腺素能受体的非阿片类无成瘾镇痛药物
【5】NPJ Parkinsons Dis︱汪锡金团队发现高PSQI是帕金森病发生异动症的独立危险因素
【6】Ann Neurol︱陈万金/樊东升课题组揭示SerRS基因杂合突变导致腓骨肌萎缩症
【7】Sci Adv︱星形胶质细胞亚群可塑性调节海洛因复吸,为药物成瘾复发治疗提供依据
【8】J Neurosci︱胡波课题组揭示背侧海马小清蛋白阳性中间神经元在联合型运动学习中的作用及其网络活动机制
【9】CNSNT︱顾小萍团队揭示增强星形胶质细胞网络可改善长时程异氟烷麻醉引发的脑网络异常和认知功能障碍
【10】Nat Aging︱阿尔兹海默症小鼠神经胶质细胞通过补体途径参与突触清除
优质科研培训课程推荐【1】单细胞测序与空间转录组学数据分析研讨会(10月29-30日 腾讯在线会议)【2】膜片钳与光遗传及钙成像技术研讨会(2022年10月15-16日 腾讯会议)会议/论坛预告&回顾【1】预告 | 神经调节与脑机接口会议(北京时间10月13-14日(U.S. Pacific Time:10月12-13日)
【2】会议报道︱人脑与机器渐行渐近,脑机接口“黑科技”照进现实
参考文献(上下滑动阅读) 1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8. https://doi.org/10.1097/00001199-200609000-00001.
2. Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull. 2013;29:94–102. https://doi.org/10.1007/s12264-012-1277-8.
3. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376:112–23. https://doi.org/10.1016/s0140-6736(10)60834-3.
4. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26:S2-12. https://doi. org/10.1097/00007632-200112151-00002.
5. Janca A, Aarli JA, Prilipko L, Dua T, Saxena S, Saraceno B. WHO/WFN Survey of neurological services: a worldwide perspective. J Neurol Sci. 2006;247:29–34. https://doi.org/10.1016/j.jns.2006.03.003.
6. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.https://doi.org/10.1093/bja/aem131.
7. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res. 2002;137:37–47. https://doi.org/10.1016/s0079-6123(02)37006-7
8. Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. Febs j. 2020. https://doi.org/10.1111/febs.15640.
9. Gao P, Ascano M, Wu Y, Barchet W, Gafney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107. https://doi.org/10.1016/j.cell.2013.04.046.
10. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9. https://doi.org/10.1038/ni.3558.
11. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and infammation. Nature. 2011;469:323–35. https://doi.org/10.1038/nature09782.
12. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, Ilyukha V, Sorokin M, Buzdin A, Fitzgerald KA, Poltorak A. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Difer. 2019;26:332–47. https://doi.org/10.1038/s41418-018-0122-7.
13. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an irondependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
14. Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, Tong L, Lv L, Wang Y, Rehwinkel J, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020;21:727–35. https://doi.org/10.1038/s41590-020-0699-0
15. Li XQ, Yu Q, Fang B, Zhang ZL, Ma H. Knockdown of the AIM2 molecule attenuates ischemia-reperfusion-induced spinal neuronal pyroptosis by inhibiting AIM2 infammasome activation and subsequent release of cleaved caspase-1 and IL-1β. Neuropharmacology. 2019;160: 107661. https://doi.org/10.1016/j.neuropharm.2019.05.038.
16. Lousberg EL, Fraser CK, Tovey MG, Diener KR, Hayball JD. Type I interferons mediate the innate cytokine response to recombinant fowlpox virus but not the induction of plasmacytoid dendritic cell-dependent adaptive immunity. J Virol. 2010;84:6549–63. https://doi.org/10.1128/jvi.02618-09.
17. Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, Okamoto R, Imaeda T, Aida J, Rothamel K, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.
Nat Commun. 2017;8:750. https://doi.org/10.1038/s41467-017-00833-9.
18. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMPAMP synthase-DNA interaction. J Immunol. 2015;194:4089–93. https://doi.org/10.4049/jimmunol.1402793.
19. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, et al. Acetylation blocks cGAS activity and inhibits self-DNAinduced autoimmunity. Cell. 2019;176:1447-1460.e1414. https://doi.org/10.1016/j.cell.2019.01.016.
20. Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, Xing JQ, Zhao M, Huang YJ, Chen S, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20:18–28. https://doi.org/10.1038/s41590-018-0262-4.
21. Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, Zhang JH. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol. 2020;57:2600–19. https://doi.org/10.1007/s12035-020-01904-7.
22. Abdullah A, Zhang M, Frugier T, Bedoui S, Taylor JM, Crack PJ. STINGmediated type-I interferons contribute to the neuroinfammatory process and detrimental efects following traumatic brain injury. J Neuroinfamm. 2018;15:323. https://doi.org/10.1186/s12974-018-1354-7.
23. Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, Chen H, Xu C, Fu X, Xu H, et al. Stimulator of IFN genes mediates neuroinfammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinfamm. 2020;17:165. https://doi.org/10.1186/s12974-020-01830-4
24. Wang YY, Shen D, Zhao LJ, Zeng N, Hu TH. Sting is a critical regulator of spinal cord injury by regulating microglial infammation via interacting with TBK1 in mice. Biochem Biophys Res Commun. 2019;517:741–8. https://doi.org/10.1016/j.bbrc.2019.07.125.
本文完
1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8. https://doi.org/10.1097/00001199-200609000-00001.
2. Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull. 2013;29:94–102. https://doi.org/10.1007/s12264-012-1277-8.
3. O’Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, Rangarajan S, Islam S, Pais P, McQueen MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376:112–23. https://doi.org/10.1016/s0140-6736(10)60834-3.
4. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine. 2001;26:S2-12. https://doi. org/10.1097/00007632-200112151-00002.
5. Janca A, Aarli JA, Prilipko L, Dua T, Saxena S, Saraceno B. WHO/WFN Survey of neurological services: a worldwide perspective. J Neurol Sci. 2006;247:29–34. https://doi.org/10.1016/j.jns.2006.03.003.
6. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.https://doi.org/10.1093/bja/aem131.
7. Beattie MS, Hermann GE, Rogers RC, Bresnahan JC. Cell death in models of spinal cord injury. Prog Brain Res. 2002;137:37–47. https://doi.org/10.1016/s0079-6123(02)37006-7
8. Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. Febs j. 2020. https://doi.org/10.1111/febs.15640.
9. Gao P, Ascano M, Wu Y, Barchet W, Gafney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell. 2013;153:1094–107. https://doi.org/10.1016/j.cell.2013.04.046.
10. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9. https://doi.org/10.1038/ni.3558.
11. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and infammation. Nature. 2011;469:323–35. https://doi.org/10.1038/nature09782.
12. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, Ilyukha V, Sorokin M, Buzdin A, Fitzgerald KA, Poltorak A. Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Difer. 2019;26:332–47. https://doi.org/10.1038/s41418-018-0122-7.
13. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an irondependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
14. Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, Tong L, Lv L, Wang Y, Rehwinkel J, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020;21:727–35. https://doi.org/10.1038/s41590-020-0699-0
15. Li XQ, Yu Q, Fang B, Zhang ZL, Ma H. Knockdown of the AIM2 molecule attenuates ischemia-reperfusion-induced spinal neuronal pyroptosis by inhibiting AIM2 infammasome activation and subsequent release of cleaved caspase-1 and IL-1β. Neuropharmacology. 2019;160: 107661. https://doi.org/10.1016/j.neuropharm.2019.05.038.
16. Lousberg EL, Fraser CK, Tovey MG, Diener KR, Hayball JD. Type I interferons mediate the innate cytokine response to recombinant fowlpox virus but not the induction of plasmacytoid dendritic cell-dependent adaptive immunity. J Virol. 2010;84:6549–63. https://doi.org/10.1128/jvi.02618-09.
17. Vincent J, Adura C, Gao P, Luz A, Lama L, Asano Y, Okamoto R, Imaeda T, Aida J, Rothamel K, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.
Nat Commun. 2017;8:750. https://doi.org/10.1038/s41467-017-00833-9.
18. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: antimalarial drugs inhibit IFN-β production through blockade of cyclic GMPAMP synthase-DNA interaction. J Immunol. 2015;194:4089–93. https://doi.org/10.4049/jimmunol.1402793.
19. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, et al. Acetylation blocks cGAS activity and inhibits self-DNAinduced autoimmunity. Cell. 2019;176:1447-1460.e1414. https://doi.org/10.1016/j.cell.2019.01.016.
20. Liu ZS, Cai H, Xue W, Wang M, Xia T, Li WJ, Xing JQ, Zhao M, Huang YJ, Chen S, et al. G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol. 2019;20:18–28. https://doi.org/10.1038/s41590-018-0262-4.
21. Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, Tang J, Zhang JH. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. Mol Neurobiol. 2020;57:2600–19. https://doi.org/10.1007/s12035-020-01904-7.
22. Abdullah A, Zhang M, Frugier T, Bedoui S, Taylor JM, Crack PJ. STINGmediated type-I interferons contribute to the neuroinfammatory process and detrimental efects following traumatic brain injury. J Neuroinfamm. 2018;15:323. https://doi.org/10.1186/s12974-018-1354-7.
23. Peng Y, Zhuang J, Ying G, Zeng H, Zhou H, Cao Y, Chen H, Xu C, Fu X, Xu H, et al. Stimulator of IFN genes mediates neuroinfammatory injury by suppressing AMPK signal in experimental subarachnoid hemorrhage. J Neuroinfamm. 2020;17:165. https://doi.org/10.1186/s12974-020-01830-4
24. Wang YY, Shen D, Zhao LJ, Zeng N, Hu TH. Sting is a critical regulator of spinal cord injury by regulating microglial infammation via interacting with TBK1 in mice. Biochem Biophys Res Commun. 2019;517:741–8. https://doi.org/10.1016/j.bbrc.2019.07.125.
本文完