J Neuroinflammation 综述︱魏建设课题组聚焦帕金森病中小胶质细胞与T细胞的相互作用对疾病进程的影响
然而,在当前的报道中大多数集中在小胶质细胞和T细胞及其相关亚型在PD病理过程中的作用。虽然这种研究方法有助于清晰的阐述研究人员所关注的细胞在PD的病理发展和进程中所发挥的具体作用及相关机制。但是,机体在抵御疾病发生维持自身健康的过程中,并非某种单一类型细胞所能完成的,在这个过程中需要各种免疫细胞的相互调控才能更好的完成对机体的保护作用。尤其是在先前报导的研究结果中也证明PD中小胶质细胞和T细胞及其相关亚型间存在相互作用,并且这种细胞间的互作对于疾病的病理改变发挥着重要的作用[9,10]。
2023年2月12日,河南大学生命科学学院魏建设教授课题组在《神经炎症杂志》(Journal of Neuroinflammation)发表了题为“The reciprocal interactions between microglia and T cells in Parkinson’s disease: a double‑edged sword”的综述论文,评述了帕金森病中小胶质细胞与T细胞的相互作用对疾病进程的相关影响。徐煜翔博士和北京积水潭医院贵州医院李永杰为该论文的共同第一作者,魏建设教授为通讯作者。在本文中,作者系统的阐述了小胶质细胞与T细胞及其相关亚型的相互作用在帕金森病中具有两种功能。一种是神经毒性小胶质细胞、Tc、Th1、Th17细胞间的互作提高了大脑内环境炎性水平,并提升了促炎类型细胞的活化与功能,放大了免疫细胞对神经元的损伤作用,从而加重了帕金森病的病理状况,加快了疾病的进程。另一种是神经保护小胶质细胞、Th2、Treg细胞间的互作对促炎性细胞的活化与功能进行调控,改善大脑内环境炎性状态,减少神经元的损伤。同时,这篇综述探讨了帕金森中小胶质细胞与T细胞互作的保护作用失调的原因。
图1 小胶质细胞在PD中对神经元的作用
(图源:Xu Y, et al., J Neuroinflammation, 2023)
近些年发现T细胞在神经退行性疾病中也发挥着重要的作用。由于PD中血脑屏障的损伤使外周循环中的T细胞浸润至大脑,同时外周循环中T细胞的表面特征发生了改变且细胞的数量明显降低。浸润大脑的Tc细胞可以识别神经元表面表达的MHC-I分子,通过释放颗粒酶、穿孔素等直接引起神经元死亡[16,17]。此外,Tc细胞还可以通过释放IFN-γ引起神经元死亡。浸润大脑的Th细胞可分为促炎性Th1和Th17以及抗炎性Th2和Treg。促炎性Th细胞可通过释放炎性细胞因子加剧细胞因子风暴,进而导致神经元死亡。相反,抗炎性Th细胞可以通过释放抗炎细胞因子减少炎症细胞因子的释放,从而调节促炎性Th细胞的活性和功能,进而保护神经元。然而,值得注意的是,γδT会抑制Treg细胞的活性和功能,从而降低其调节炎症状态的能力[18-20](图2)。
图2 外周浸润的T细胞对PD神经元的作用
(图源:Xu Y, et al., J Neuroinflammation, 2023)
小胶质细胞与T细胞及其相关亚型通过细胞因子、趋化因子等方式相互影响,对PD病理状态产生显著的效果。该文章接下来分开讨论了小胶质细胞与T细胞及其相关亚型间的互作对神经元的损害与保护作用。
PD中小胶质细胞和T细胞的相互作用放大了炎症反应。在微环境中存在TGF-β时,神经毒性小胶质细胞释放的IL-6和IL-1β作用于Naïve T,分别有诱导分化为Th17细胞和抑制分化为Treg细胞的作用[21-25]。神经毒性小胶质细胞释放的趋化因子CXCL9、CXCL10、CXCL11、CCL5和CXCL16能与CD8+T细胞和Th1细胞表面的CXCR3、CCR5和CXCR6结合,进一步增加细胞活化和释放炎症细胞因子的能力[26,27]。值得注意的是,从T细胞释放的炎性细胞因子可以促进小胶质细胞的功能和激活。同时,响应炎性细胞因子的小胶质细胞,通过细胞因子和趋化因子的释放增加其细胞激活状态。总的来说,PD中神经毒性小胶质细胞和促炎类型的T细胞之间的相互作用进一步放大了微环境中的炎症状态,加剧了神经元损伤(图3)。
虽然小胶质细胞与T细胞的相互作用可以调节炎症反应,但在PD中小胶质细胞和T细胞相关亚型的互作对于炎症的调节作用似乎被减弱/失效了。其中可能原因是:(1)与年龄相关的神经保护小胶质细胞调节炎症状态的负反馈机制可能存在缺陷。伴随着机体年龄增长小胶质细胞促炎水平增加同时表现出去核化和过程碎片化的“营养不良”现象[33,34]。(2)大脑内微环境促进炎性细胞的分化及功能表达,进一步造成免疫失调。浸润至大脑的T细胞受促炎类型小胶质细胞、神经元分泌的多巴胺、大脑内环境等多方面因素诱导后促炎类型的Tc、Th1、Th17细胞的活化状态及功能得到进一步的提升,而抗炎类型的Th2、Treg的功能受到抑制。同时Naïve T也被诱导向促炎类型的Th1、Th17分化,增加了促炎细胞类型的细胞数量,进一步促进了大脑内微环境炎性效果,减弱了抗炎细胞类型的调节作用。在此过程中,大脑内微环境炎性状态的增加促进了小胶质向神经毒性功能的转化并释放炎性细胞因子和神经毒性介质进一步加重神经元的损伤,从而出现垂死的神经元和急性炎症之间的恶性循环[35,36]。
在既往针对PD病理机制的研究中往往采用模式动物与细胞开展相关实验探究。基于这些模型已取得了极大的成果并进一步解释了PD相关的病理机制。但由于以上模型存在部分的局限性包括物种之间表观遗传差异等,进而导致研究结果并不能更为准确的描述人类PD患者的病理过程。伴随着iPSC技术的快速发展,研究人员使用多种PD患者终末分化细胞通过iPSC技术诱导其成为中脑多巴胺神经元、小胶质细胞等,并采用基因测序、钙成像、电生理等方法进行进一步的鉴定[37-40]。发现iPSC诱导的细胞与人类PD患者脑内多巴胺神经元、小胶质细胞等具备高度的一致性,同时使用这种模型可以更好的探究散发性PD患者中基因突变等因素造成的病理影响。近些年iPSC技术的越发成熟,类器官模型的建立也得到了快速的发展,使体外2D模型向3D模型衍变,从而更好地评估神经元的空间效应等结果[41]。当前已经成功建立出一种嵌合小胶质细胞的中脑类器官模型,这将更详细、准确的评估小胶质细胞与T细胞间的相互作用对于人类PD患者渐进的病理过程的影响。
第一作者:徐煜翔 博士(左)、李永杰 治疗师(中);通讯作者:魏建设 教授(右)
(照片提供自:魏建设团队)
欢迎加入逻辑神经科学群:文献学习2
扫码添加微信,并备注:姓名-单位-研究领域-学位/职称【1】Nat Aging︱认知弹性实证测量可解释tau病理对老化中记忆改变的个体差异
【2】专家点评 Transl Psychiatry︱全程mRNA疫苗接种者中持续的夜间睡眠时间过短与长新冠风险增加有关
【3】Nat Commun︱scMoMaT: 基于矩阵分解的单细胞数据融合与生物特征提取方法
【4】Cell Discov︱徐敏/张思宇团队合作揭示研星形胶质细胞调控睡眠-觉醒的新机制
【5】BMJ︱宣武医院贾建平团队找到留住老年记忆、恢复大脑活力的方法
【6】Genome Biol︱何川团队解析YTHDF家族蛋白功能的“不同”与“同”
【7】J Alzheimers Dis︱重磅!贾建平团队报道世界第一例19岁阿尔茨海默病患者
【8】J Neurosci︱梅峰/叶剑课题组揭示老化过程中少突胶质细胞更替不足是导致视神经轴突退化和视功能下降的重要原因
【9】Cell Biosci 综述︱唐铁山团队评述染色质重塑在神经发育和神经退行中的作用、机制及小分子调控
【10】CNS Neurosci Ther︱西北大学赵新锋课题组建立NMDA-2A受体活性配体筛选新方法,助力阿尔茨海默病的新药研发
新刊启航,欢迎投稿科研学习课程精选【1】宏基因组与代谢组/脂质组学R软件数据可视化研讨会(2月18-19日,腾讯在线会议)(延期至3月25-26日)
【2】单细胞测序与空间转录组学数据分析研讨会(3月11-12日 腾讯在线会议)
【3】高分SCI文章与标书作图(暨AI软件作图)研讨会(2月25-26日 ,腾讯在线会议)(延期至3月25-26日)
参考文献(上下滑动查看)
[1] Deng H, Wang P, Jankovic J: The genetics of Parkinson disease. Ageing Res Rev 2018, 42:72-85.[2] Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG: The gut microbiome in neurological disorders. The Lancet Neurology 2020, 19:179-194.[3] Sulzer D, Antonini A, Leta V, Nordvig A, Smeyne RJ, Goldman JE, Al-Dalahmah O, Zecca L, Sette A, Bubacco L, et al: COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. NPJ Parkinsons Dis 2020, 6:18.[4] Murata H, Barnhill LM, Bronstein JM: Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022, 37:894-904.[5] Block ML, Calderon-Garciduenas L: Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 2009, 32:506-516.[6] Jafari S, Etminan M, Aminzadeh F, Samii A: Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord 2013, 28:1222-1229.[7] De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, Conte M, Rosato C, Ciniglio Appiani M, de Vincentiis M: Parkinson's disease: Autoimmunity and neuroinflammation. Autoimmun Rev 2016, 15:1005-1011.[8] Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J: Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020, 16:303-318.[9] Subbarayan MS, Hudson C, Moss LD, Nash KR, Bickford PC: T cell infiltration and upregulation of MHCII in microglia leads to accelerated neuronal loss in an α-synuclein rat model of Parkinson's disease. J Neuroinflammation 2020, 17:242.[10] Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE: Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020, 15:32.[11] Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HL: Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol Neurobiol 2017, 54:7567-7584.[12] Labzin LI, Heneka MT, Latz E: Innate Immunity and Neurodegeneration. Annu Rev Med 2018, 69:437-449.[13] Nizami S, Hall-Roberts H, Warrier S, Cowley SA, Di Daniel E: Microglial inflammation and phagocytosis in Alzheimer's disease: Potential therapeutic targets. Br J Pharmacol 2019, 176:3515-3532.[14] Nasrolahi A, Safari F, Farhoudi M, Khosravi A, Farajdokht F, Bastaminejad S, Sandoghchian Shotorbani S, Mahmoudi J: Immune system and new avenues in Parkinson's disease research and treatment. Rev Neurosci 2019, 30:709-727.[15] Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G: Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020, 21.[16] Galiano-Landeira J, Torra A, Vila M, Bove J: CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease. Brain 2020, 143:3717-3733.[17] Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, et al: T cells from patients with Parkinson's disease recognize alpha-synuclein peptides. Nature 2017, 546:656-661.[18] Zhou C, Zhou X, He D, Li Z, Xie X, Ren Y: Reduction of Peripheral Blood iNKT and gammadeltaT Cells in Patients With Parkinson's Disease: An Observational Study. Front Immunol 2020, 11:1329.[19] Petermann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M, Korn T: gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010, 33:351-363.[20] González H, Pacheco R: T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation 2014, 11:201.[21] Zhou L, Ivanov, II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR: IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007, 8:967-974.[22] Kimura A, Naka T, Kishimoto T: IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci U S A 2007, 104:12099-12104.[23] Kimura A, Kishimoto T: IL-6: regulator of Treg/Th17 balance. Eur J Immunol 2010, 40:1830-1835.[24] Zhang Y, Liu Z, Tian M, Hu X, Wang L, Ji J, Liao A: The altered PD-1/PD-L1 pathway delivers the 'one-two punch' effects to promote the Treg/Th17 imbalance in pre-eclampsia. Cell Mol Immunol 2018, 15:710-723.[25] Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, Monticelli S, Lanzavecchia A, Sallusto F: Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012, 484:514-518.[26] Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25:677-686.[27] Orihuela R, McPherson CA, Harry GJ: Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016, 173:649-665.[28] Peterson S, Poposki JA, Nagarkar DR, Chustz RT, Peters AT, Suh LA, Carter R, Norton J, Harris KE, Grammer LC, et al: Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2012, 129:119-127 e111-119.[29] Su S, Liao J, Liu J, Huang D, He C, Chen F, Yang L, Wu W, Chen J, Lin L, et al: Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer. Cell Res 2017, 27:461-482.[30] Chang Y, de Nadai P, Azzaoui I, Morales O, Delhem N, Vorng H, Tomavo S, Ait Yahia S, Zhang G, Wallaert B, et al: The chemokine CCL18 generates adaptive regulatory T cells from memory CD4+ T cells of healthy but not allergic subjects. FASEB J 2010, 24:5063-5072.[31] van der Voort R, Kramer M, Lindhout E, Torensma R, Eleveld D, van Lieshout AW, Looman M, Ruers T, Radstake TR, Figdor CG, Adema GJ: Novel monoclonal antibodies detect elevated levels of the chemokine CCL18/DC-CK1 in serum and body fluids in pathological conditions. J Leukoc Biol 2005, 77:739-747.[32] Melief J, Koning N, Schuurman KG, Van De Garde MD, Smolders J, Hoek RM, Van Eijk M, Hamann J, Huitinga I: Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia 2012, 60:1506-1517.[33] Koellhoffer EC, McCullough LD, Ritzel RM: Old Maids: Aging and Its Impact on Microglia Function. Int J Mol Sci 2017, 18.[34] Streit WJ, Braak H, Xue QS, Bechmann I: Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathol 2009, 118:475-485.[35] Bido S, Muggeo S, Massimino L, Marzi MJ, Giannelli SG, Melacini E, Nannoni M, Gambare D, Bellini E, Ordazzo G, et al: Microglia-specific overexpression of alpha-synuclein leads to severe dopaminergic neurodegeneration by phagocytic exhaustion and oxidative toxicity. Nat Commun 2021, 12:6237.[36] Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57-69.[37] Badanjak K, Mulica P, Smajic S, Delcambre S, Tranchevent LC, Diederich N, Rauen T, Schwamborn JC, Glaab E, Cowley SA, et al: iPSC-Derived Microglia as a Model to Study Inflammation in Idiopathic Parkinson's Disease. Front Cell Dev Biol 2021, 9:740758.[38] Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ, Vowles J, James WS, Cowley SA, Wade-Martins R: Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 2014, 9:e87388.[39] Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, et al: A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports 2017, 8:1727-1742.[40] Matsumoto T, Fujimori K, Andoh-Noda T, Ando T, Kuzumaki N, Toyoshima M, Tada H, Imaizumi K, Ishikawa M, Yamaguchi R, et al: Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling. Stem Cell Reports 2016, 6:422-435.[41] Sabate-Soler S, Nickels SL, Saraiva C, Berger E, Dubonyte U, Barmpa K, Lan YJ, Kouno T, Jarazo J, Robertson G, et al: Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 2022, 70:1267-1288.
本文完