专著推荐 | 《二语研究中的数据可视化与分析》Routledge新书
点击蓝字关注我们 Spring comes
专著推荐
通讯君与Routledge出版社合作推广最新、最好的语言研究著作。本期"专著推荐"(本栏目不区分books与edited books)强烈种草美国学者Guilherme Duarte Garcia的最新著作Data Visualization and Analysis in Second Language Research。传统二语习得的数据可视化主要是通过SPSS软件实现的,但是囿于软件功能已经不能满足国际学术研究的需求。使用R做二语研究数据分析与可视化呈现不仅能满足更多研究需求,更是一种国际学术研究的当下潮流。
当下的数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。主要是为了有效地传达思想概念,美学形式与信息揭示需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。
本期书目
ISBN 9780367469610
Published May 31, 2021 by Routledge
286 Pages 30 B/W Illustrations
作者:Guilherme Duarte Garcia
超低福利价:平装版447元,扫码即可购买 (本价格涵盖书费、国际物流、关税、报关费用、税票一揽子在内)(对比精装版1100元更划算)现货10本,先购先得。售罄后转为期货,国际物流到货周期8周左右(此间需要在伦敦包运国际货机、过中国海关、检疫检验、国内物流等一系列手续)
可以开具电子发票
对公转账、私人定制业务联系王老师13501892122
内容简介
This introduction to visualization techniques and statistical models for second language research focuses on three types of data (continuous, binary, and scalar), helping readers to understand regression models fully and to apply them in their work. Garcia offers advanced coverage of Bayesian analysis, simulated data, exercises, implementable script code, and practical guidance on the latest R software packages. The book, also demonstrating the benefits to the L2 field of this type of statistical work, is a resource for graduate students and researchers in second language acquisition, applied linguistics, and corpus linguistics who are interested in quantitative data analysis.
作者简介
Dr. Garcia is an Assistant Professor in the Department of English at Ball State University. He has a PhD in Linguistics from McGill University, where he was also a member of the Centre for Research on Brain, Language, and Music (CRBLM). His research interests are Phonology, (Second) Language Acquisition, and quantitative data analysis. He's especially interested in using data analysis to uncover patterns that help us better assess representational and theoretical assumptions in phonology.
本书目录
Contents
List of figures
List of tables
List of code blocks
Acknowledgments
Preface
Part I Getting ready
1 Introduction
1.1 Main objectives of this book
1.2 A logical series of steps
1.2.1 Why focus on data visualization techniques?
1.2.2 Why focus on full-fledged statistical models?
1.3 Statistical concepts
1.3.1 p-values
1.3.2 Effect sizes
1.3.3 Confidence intervals
1.3.4 Standard errors
1.3.5 Further reading
2 R basics
2.1 Why R?
2.2 Fundamentals
2.2.1 Installing R and RStudio
2.2.2 Interface
2.2.3 R basics
2.3 Data frames
2.4 Reading your data
2.4.1 Is your data file ready?
2.4.2 R Projects
2.4.3 Importing your data
2.5 The tidyverse package
2.5.1 Wide-to-long transformation
2.5.2 Grouping, filtering, changing, and summarizing data
2.6 Figures
2.6.1 Using ggplot
2.6.2 General guidelines for data visualization
2.7 Basic statistics in R
2.7.1 What’s your research question?
2.7.2 t-tests and ANOVAs in R
2.7.3 A post-hoc test in R
2.8 More packages
2.9 Additional readings on R
2.10 Summary
2.11 Exercises
Part II Visualizing the data
3 Continuous data
3.1 Importing your data
3.2 Preparing your data
3.3 Histograms
3.4 Scatter plots
3.5 Box plots
3.6 Bar plots and error bars
3.7 Line plots
3.8 Additional readings on data visualization
3.9 Summary
3.10 Exercises
4 Categorical data
4.1 Binary data
4.2 Ordinal data
4.3 Summary
4.4 Exercises
5 Aesthetics: optimizing your figures
5.1 More on aesthetics
5.2 Exercises
Part III Analyzing the data
6 Linear regression
6.1 Introduction
6.2 Examples and interpretation
6.2.1 Does Hours affect scores?
6.2.2 Does Feedback affect scores?
6.2.3 Do Feedback and Hours affect scores?
6.2.4 Do Feedback and Hours interact?
6.3 Beyond the basics
6.3.1 Comparing models and plotting estimates
6.3.2 Scaling variables
6.4 Summary
6.5 Exercises
7 Logistic regression
7.1 Introduction
7.1.1 Defining the best curve in a logistic model
7.1.2 A family of models
7.2 Examples and interpretation
7.2.1 Can reaction time differentiate learners and native speakers?
7.2.2 Does Condition affect responses?
7.2.3 Do Proficiency and Condition affect responses?
7.2.4 Do Proficiency and Condition interact?
7.3 Summary
7.4 Exercises
8 Ordinal regression
8.1 Introduction
8.2 Examples and interpretation
8.2.1 Does Condition affect participants’ certainty?
8.2.2 Do Condition and L1 interact?
8.3 Summary
8.4 Exercises
9 Hierarchical models
9.1 Introduction
9.2 Examples and interpretation
9.2.1 Random-intercept model
9.2.2 Random-slope and random-intercept model
9.3 Additional readings on regression models
9.4 Summary
9.5 Exercises
10 Going Bayesian
10.1 Introduction to Bayesian data analysis
10.1.1 Sampling from the posterior
10.2 The RData format
10.3 Getting ready
10.4 Bayesian models: linear and logistic examples
10.4.1 Bayesian model A: Feedback
10.4.2 Bayesian model B: Relative clauses with prior specifications
10.5 Additional readings on Bayesian inference
10.6 Summary
10.7 Exercises
11 Final remarks
Appendix A: Troubleshooting
Appendix B: RStudio shortcuts
Appendix C: Symbols and acronyms
Appendix D: Files used in this book
Appendix E: Contrast coding
Appendix F: Models and nested data
Glossary
References
Subject index
Function Index
编者按
本文编辑:吉林大学 王峰
郑重声明:我们优先推广免费的学术会议、讲座、研修等项目。收费项目与商务合作需支持劳务费,请联系dianzishu@126.com 商谈。
语言学及应用语言学研究著作推荐
原版书海外代购!如需购买国际原版学术著作,可以联系我们询价,支持对公转账,可以制订合同,开具电子发票和购物清单。订购联系人:王老师 13501892122(电话同微信)
2021-09-22
2021-09-21
2021-09-17
2021-09-16
2021-09-14
2021-09-06
2021-09-04
2021-09-02
2021-08-31
2021-08-28
2021-08-10
2021-08-12
2021-08-09
2021-08-06
2021-08-02
2021-07-29
2021-07-17
2021-07-14
2021-07-10
2021-07-06
2021-06-25
2021-06-21
2021-06-14
10万学者关注了
○
语言学通讯
○
科研助力|学术观点|专著推荐|
期刊动态|教师研修|招贤纳士|
博士招生|读书小札
请留下你指尖的温度
让太阳拥抱你
记得这是一个有情怀的公众号