查看原文
其他

微生物群落来自哪里,我们说了算-FEAST or SourceTracker

宏基因组 2022-05-08

The following article is from 微生信生物 Author 文涛聊科研

  • 写在前面

最近由于老板有分析项目,我实在是进展缓慢,一直苦恼并艰难的探索和进展,所以很长时间没有和大家见面了,今天我为大家带来的source tracker分析,使用前一段时间刚出来的工具FEAST。

刘老师对这片文章进行了详细的解读: Nature Methods:快速准确的微生物来源追溯工具FEAST跟着刘老师的步伐,今天我对这个工具进行一个尝试。为什么作者不将这个工具封装到R包呢这样不就更容易了吗?可能好多小伙伴都没有从github上克隆过项目。

SourceTracker的流程及其说明宏基因组公众号上有很详细的介绍,点为跳转,这里就略过了。

本次重点FEAST

准备

不仅仅是这一次,我在之后全部的分析都会将整个群落封装到phylsoeq,只是为了更好的更加灵活的对微生物群落数据进行分析,当然大家如果初次见面,可能需要安装依赖极多的phyloseq包。需要熟悉phylsoeq封装的结构和调用方法。

为了让大家更容易操作,我把数据保存为csv,方便尚未接触phyloseq的小伙伴进行无压力测试。

结合作者的分析内核,我构建了基于otu表格和分组文件的流畅pipline,并且添加可视化模块和保存结果模块,希望可以方便使用。

微生物来源分析

FEAST提供两种方式来做微生物来源分析。

  1. 基于单个目标的来源。单个样品的来分析。2.基于多个目标和多个来源。多个样品进行来源分析。

首先我们来演示基于单个目标样品和来源样品的来源分析

# rm(list = ls())
# gc()

path = "./phyloseq_7_source_FEAST"
dir.create(path)
##导入主函数
source("./FEAST-master/FEAST_src//src.R")


ps = readRDS("./a3_DADA2_table/ps_OTU_.ps")
# 导入分组文件和OTU表格
metadata <- as.data.frame(sample_data(ps))
head(metadata)

write.csv(metadata,"metadata.csv",quote = F)
# Load OTU table
vegan_otu <- function(physeq){
OTU <- otu_table(physeq)
if(taxa_are_rows(OTU)){
OTU <- t(OTU)
}
return(as(OTU,"matrix"))
}
otus <- as.data.frame(t(vegan_otu(ps)))
write.csv(otus,"otus.csv",quote = F)
otus <- t(as.matrix(otus))



###下面区分目标样品和来源样品。

envs <- metadata$SampleType

metadata<- arrange(metadata, SampleType)
metadata$id = rep(1:6,4)
Ids <- na.omit(unique(metadata$id))
it = 1

train.ix <- which(metadata$SampleType%in%c("B","C","D")& metadata$id == Ids[it])
test.ix <- which(metadata$SampleType=='A' & metadata$id == Ids[it])


# Extract the source environments and source/sink indices

num_sources <- length(train.ix) #number of sources
COVERAGE = min(rowSums(otus[c(train.ix, test.ix),])) #Can be adjusted by the user


#对两组样品进行抽平
sources <- as.matrix(rarefy(otus[train.ix,], COVERAGE))
sinks <- as.matrix(rarefy(t(as.matrix(otus[test.ix,])), COVERAGE))

dim(sinks)
print(paste("Number of OTUs in the sink sample = ",length(which(sinks > 0))))
print(paste("Seq depth in the sources and sink samples = ",COVERAGE))
print(paste("The sink is:", envs[test.ix]))





# Estimate source proportions for each sink
EM_iterations = 1000 # number of EM iterations. default value

FEAST_output<-FEAST(source=sources, sinks = t(sinks), env = envs[train.ix], em_itr = EM_iterations, COVERAGE = COVERAGE)
Proportions_est <- FEAST_output$data_prop[,1]
names(Proportions_est) <- c(as.character(envs[train.ix]), "unknown")

print("Source mixing proportions")
Proportions_est
round(Proportions_est,3)

就正常样品而言,我们都会测定重复,这里基于多个样品的sourceracker分析

基于多个目标和来源的微生物来源分析: different_sources_flags设置目标样品和来源样品的对应关系。是否不同目标对应不同来源样品,还是不同目标对应相同来源样品




##导入主函数
source("./FEAST-master/FEAST_src//src.R")


ps = readRDS("./a3_DADA2_table/ps_OTU_.ps")
# 导入分组文件和OTU表格
metadata <- as.data.frame(sample_data(ps))
head(metadata)
# Load OTU table
vegan_otu <- function(physeq){
OTU <- otu_table(physeq)
if(taxa_are_rows(OTU)){
OTU <- t(OTU)
}
return(as(OTU,"matrix"))
}
otus <- as.data.frame(t(vegan_otu(ps)))
otus <- t(as.matrix(otus))


head(metadata)

metadata<- arrange(metadata, SampleType)
metadata$id = rep(1:6,4)
EM_iterations = 1000 #default value
different_sources_flag = 1


envs <- metadata$SampleType
Ids <- na.omit(unique(metadata$id))
Proportions_est <- list()
it = 1

for(it in 1:length(Ids)){


# Extract the source environments and source/sink indices
if(different_sources_flag == 1){

train.ix <- which(metadata$SampleType%in%c("B","C","D")& metadata$id == Ids[it])
test.ix <- which(metadata$SampleType=='A' & metadata$id == Ids[it])

}

else{

train.ix <- which(metadata$SampleType%in%c("B","C","D"))
test.ix <- which(metadata$SampleType=='A' & metadata$id == Ids[it])
}

num_sources <- length(train.ix)
COVERAGE = min(rowSums(otus[c(train.ix, test.ix),])) #Can be adjusted by the user

# Define sources and sinks

sources <- as.matrix(rarefy(otus[train.ix,], COVERAGE))
sinks <- as.matrix(rarefy(t(as.matrix(otus[test.ix,])), COVERAGE))


print(paste("Number of OTUs in the sink sample = ",length(which(sinks > 0))))
print(paste("Seq depth in the sources and sink samples = ",COVERAGE))
print(paste("The sink is:", envs[test.ix]))

# Estimate source proportions for each sink

FEAST_output<-FEAST(source=sources, sinks = t(sinks), env = envs[train.ix], em_itr = EM_iterations, COVERAGE = COVERAGE)
Proportions_est[[it]] <- FEAST_output$data_prop[,1]


names(Proportions_est[[it]]) <- c(as.character(envs[train.ix]), "unknown")

if(length(Proportions_est[[it]]) < num_sources +1){

tmp = Proportions_est[[it]]
Proportions_est[[it]][num_sources] = NA
Proportions_est[[it]][num_sources+1] = tmp[num_sources]
}

print("Source mixing proportions")
print(Proportions_est[[it]])


}

print(Proportions_est)


went = as.data.frame(Proportions_est)
colnames(went) = paste("repeat_",unique(metadata$id),sep = "")
head(went)

filename = paste(path,"/FEAST.csv",sep = "")
write.csv(went,filename,quote = F)

出图,简单出一张饼图供大家参考


library(RColorBrewer)
library(dplyr)
library(graphics)


head(went)

plotname = paste(path,"/FEAST.pdf",sep = "")
pdf(file = plotname,width = 12,height = 12)
par(mfrow=c((length(unique(metadata$SampleType))%/%2 +2 ),2), mar=c(1,1,1,1))
# layouts = as.character(unique(metadata$SampleType))

for (i in 1:length(colnames(went))) {

labs <- paste0(row.names(went)," \n(", round(went[,i]/sum(went[,i])*100,2), "%)")

pie(went[,i],labels=labs, init.angle=90,col = brewer.pal(nrow(went), "Reds"),
border="black",main =colnames(went)[i] )
}

dev.off()

基于多个重复,我们合并饼图展示

我们作为生物可能测定9个以上重复了,如果展示九个饼图,那就显得太夸张了,求均值,展示均值饼图

head(went)


asx = as.data.frame(rowMeans(went))

asx = as.matrix(asx)
asx_norm = t(t(asx)/colSums(asx)) #* 100 # normalization to total 100
head(asx_norm)

plotname = paste(path,"/FEAST_mean.pdf",sep = "")
pdf(file = plotname,width = 6,height = 6)
labs <- paste0(row.names(asx_norm)," \n(", round(asx_norm[,1]/sum(asx_norm[,1])*100,2), "%)")

pie(asx_norm[,1],labels=labs, init.angle=90,col = brewer.pal(nrow(went), "Reds"),
border="black",main = "mean of source tracker")
dev.off()

历史目录

R语言分析技术

  1. 《扩增子16s核心OTU挑选-基于otu_table的UpSet和韦恩图》

  2. 《分类堆叠柱状图顺序排列及其添加合适条块标签》

  3. 《R语言绘制带有显著性字母标记的柱状图》

  4. 《使用R实现批量方差分析(aov)和多重比较(LSD)》

  5. Rstudio切换挂载R版本及本地安装一些包

  6. 玩转R包

  7. 用ggplot画你们心中的女神

  8. ggplot版钢铁侠

  9. 想用ggplot做一张致谢ppt,但是碰到了520,画风就变了

扩增子专题

  1. 《16s分析之Qiime数据整理+基础多样性分析》

  2. 《16s分析之差异展示(热图)》

  3. 迅速提高序列拼接效率,得到后续分析友好型输入,依托qiime

  4. https://mp.weixin.qq.com/s/6zuB9JKYvDtlomtAlxSmGw》

  5. 16s分析之网络分析一(MENA)

  6. 16s分析之进化树+差异分析(一)

  7. 16s分析之进化树+差异分析(二)

  8. Qiime2学习笔记之Qiime2网站示例学习笔记

  9. PCA原理解读

  10. PCA实战

  11. 16s分析之LEfSe分析

  12. 16s分析之FishTaco分析

  13. PICRUSt功能预测又被爆出新的问题啦!

基于phyloseq的微生物群落分析

  1. 开年工作第一天phyloseq介绍

  2. phyloseq入门

  3. R语言微生物群落数据分析:从原始数据到结果(No1)

  4. R语言微生物群落数据分析:从原始数据到结果(No2))

  5. phyloseq进化树可视化

  6. 基于phyloseq的排序分析

代谢组专题

  1. 非靶向代谢组学数据分析连载(第零篇引子)

  2. 非靶向代谢组学分析连载(第一篇:缺失数据处理、归一化、标准化)

当科研遇见python

1.当科研遇见python

科学知识图谱

1.citespace 的基本术语与下载安装

杂谈

  1. 我的生物信息之路

  2. graphlan进一步学习笔记之进化树

  3. 如约 为大家带来了graphlan的物种分类树

猜你喜欢

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树

必备技能:提问 搜索  Endnote

文献阅读 热心肠 SemanticScholar Geenmedical

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

在线工具:16S预测培养基 生信绘图

科研经验:云笔记  云协作 公众号

编程模板: Shell  R Perl

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存