其他
深圳湾实验室郭腾飞课题组揭示β-淀粉样蛋白及tau蛋白沉积的初始水平是如何不同地影响了tau蛋白沉积在阿尔茨海默病中的纵向增长
综上所述,该研究利用ADNI临床队列数据库,揭示了Aβ斑块和tau缠结的初始水平在AD病理的不同阶段对大脑皮层纵向tau缠结的聚集和迁移中发挥的作用不同:在Tau缠结尚未大量形成时,Aβ和内嗅皮层tau缠结水平越高,早期tau聚集脑区的纵向tau缠结的聚集速率越快;而在Tau缠结大量形成后,Aβ斑块与纵向tau缠结聚集的关联程度减弱。此时,tau缠结快速聚集脑区的tau缠结水平对纵向tau缠结聚集速率的作用更大。
这些结果对AD药物试验高风险人群筛选以及临床上AD的精准干预治疗策略等方面具有重要启示意义:抗-Aβ药物在AD早期病理阶段可能有效抑制Aβ斑块诱导的tau缠结聚集,然而当皮层聚集大量tau缠结后,靶向tau蛋白的小分子药物也许才能最大程度减缓更多的tau缠结形成,从而抑制AD疾病的恶化和演变。
【4】Brain︱郑州大学史长河/许予明课题组揭示NOTCH2NLC基因GGC重复扩增突变导致核糖体生成及翻译功能障碍【5】Sci Adv︱特异性降低神经元胰岛素通路可改善男性的老年健康【6】Cell Biosci︱患者来源的癫痫相关LGI1突变通过调节Kv1.1增加癫痫易感性【7】PNAS︱浙大胡薇薇/陈忠团队发现基于组胺H2受体的精神分裂症潜在药物靶标【8】Redox Biol︱澳科大罗婉君团队揭示金丝桃苷通过内质网-线粒体Ca2+信号转导级联减轻阿尔茨海默症Aβ毒性作用机制【9】NPP︱南医大高天明院士团队揭示mGluR5介导压力所致焦虑样行为的细胞机制【10】Neuro-Oncol︱浙大吴丹/张洪锡课题组通过新型弥散磁共振技术实现儿童神经胶质瘤的病理分级与分子分型科研学习课程精选【1】宏基因组与代谢组/脂质组学R软件数据可视化研讨会(3月25-26日 ,腾讯在线会议)【2】高分SCI文章与标书作图(暨AI软件作图)研讨会(3月25-26日 ,腾讯在线会议)【3】膜片钳与光遗传及钙成像技术研讨会(4月8-9日 腾讯会议)【4】R语言生信数据分析及可视化作图(网络)研讨会(3月3-5日,腾讯在线会议)【5】单细胞测序与空间转录组学数据分析研讨会(3月11-12日 腾讯在线会议)
参考文献(上下滑动查看) [1] Guo T, Dukart J, Brendel M, Rominger A, Grimmer T, Yakushev I. Rate of β-amyloid accumulation varies with baseline amyloid burden: implica- tions for anti-amyloid drug trials. Alzheimers Dement. 2018;14:1387–96.[2] Guo T, Korman D, Baker SL, Landau SM, Jagust WJ. Longitudinal cogni- tive and biomarker measurements support a unidirectional pathway in Alzheimer’s disease pathophysiology. Biol Psychiatry. 2021;89:786–94.[3] Sanchez JS, Becker JA, Jacobs HIL, Hanseeuw BJ, Jiang S, Schultz AP, et al. The cortical origin and initial spread of medial temporal tauopathy in Alzheimer’s disease assessed with positron emission tomography. Sci Transl Med. 2021;13:eabc0655.[4] Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253:1380–6 United States.[5] Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138:2814–33 Oxford University Press.[6] Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topo- graphical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex. 1991;1:103–16 Oxford University Press.[7] Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associ- ated with human aging. Acta Neuropathol. 2014;128:755–66.[8] Doré V, Krishnadas N, Bourgeat P, Huang K, Li S, Burnham S, et al. Relation- ship between amyloid and tau levels and its impact on tau spreading. Eur J Nucl Med Mol Imaging. 2021;48:2225–32 Springer.[9] Jack CR, Wiste HJ, Botha H, Weigand SD, Therneau TM, Knopman DS,
et al. The bivariate distribution of amyloid-β and tau: relationship with established neurocognitive clinical syndromes. Brain. 2019;142:3230–42.[10] Young CB, Winer JR, Younes K, Cody KA, Betthauser TJ, Johnson SC, et al. Divergent cortical tau positron emission tomography patterns among patients with preclinical Alzheimer disease. JAMA Neurol. 2022;79(6):592–603.[11] Lee WJ, Brown JA, Kim HR, La Joie R, Cho H, Lyoo CH, et al. Regional Aβ-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron. 2022;110(12):1932–1943.e5 Elsevier.[12] Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Predicting future rates of tau accumulation on PET. Brain. 2020;143:3136–50.[13] Guo T, Korman D, La Joie R, Shaw LM, Trojanowski JQ, Jagust WJ, et al. Normalization of CSF pTau measurement by Aβ40 improves its per- formance as a biomarker of Alzheimer’s disease. Alzheimers Res Ther. 2020;12:97.[14] Pontecorvo MJ, Devous MD, Kennedy I, Navitsky M, Lu M, Galante N, et al. A multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive impairment and Alzheimer’s disease dementia. Brain. 2019;142:1723–35.
本文完