Neurosci Bull 综述︱南医大陈翌华/高天明等评述星形胶质细胞在记忆中的作用
最近的一项研究在单细胞水平(在体双光子Ca2+成像)和细胞群水平(基于光纤的记录)通过监测星形胶质细胞的Ca2+活动,揭示了学习诱导的星形胶质细胞活动变化[9]。这些变化出现在恐惧学习期间,在恐惧记忆期间持续存在,并在学习行为消失时消失[9]。作者进一步发现,这类星形胶质细胞反应性需要通过胆碱能神经元传入激活α7-nAChRs(乙酰胆碱受体)[9]。敲除小鼠听觉皮层星形胶质细胞中的α7-nAChR会显著损害恐惧记忆[9]。特异性激活星形胶质细胞Gi-GPCR可以增强其Ca2+活动[10,11]。根据这一观点,通过DREADD-Gi或Gi偶联μ阿片受体刺激CA1星形胶质细胞可增强近期条件性位置偏好(CPP)的情境记忆[12]。激活星形胶质细胞Gi-GPCR,尤其是Gi偶联μ-阿片受体,通过K2P通道诱导谷氨酸释放,进而激活突触前mGluR1s增加谷氨酸释放的概率,并增强早期LTP,因此这可能是获得与CPP相关的记忆的原因[12]。
星形胶质细胞GPCR参与长期记忆。LTP是研究最深入的记忆细胞模型之一,定义为在短暂的高频刺激或其他刺激模式诱导后突触传递效能的长期增强。LTP具有独立于蛋白质合成的早期阶段(E-LTP),以及依赖于蛋白质合成的晚期阶段(L-LTP),。单次短暂高频刺激导致E-LTP仅持续1小时,而重复性高频刺激产生至少持续数小时的L-LTP。新进研究发现星形胶质细胞分泌BDNF依赖于IP3R2依赖性Ca2+ 信号,并且星胶来源的BDNF对于L-LTP 和远期记忆至关重要[55]。海马星形胶质细胞Gq-GPCR参与长期记忆:激活海马星胶的Gq-GPCR可增加D-丝氨酸释放,促进E-LTP,并最终促进近期记忆形成;激活光敏感通道ChR2可诱导海马星胶Ca2+水平升高,通过释放腺苷导致近期恐惧记忆受损。杏仁核的星形胶质细胞Gq-GPCR参与近期记忆:中央内侧杏仁核中的Gq-GPCR激活促进腺苷释放,通过A1Rs增加外侧中央杏仁核的抑制性输入,并通过A2ARs抑制基底外侧杏仁核的兴奋性输入,从而损害了近期恐惧记忆。Gi-GPCR参与长期记忆:星形胶质细胞Gi-GPCRs特别是MOR的激活,通过K2P通道诱导谷氨酸释放,激活突触前mGluR1增加谷氨酸释放,增强NMDAR依赖性突触可塑性,从而促进记忆的获取;而CA1星形胶质细胞Gi-GPCR的激活会损害远期但不损害近期的记忆检索,并降低检索过程中ACC的活性。
最近的研究表明,星形胶质细胞在成熟突触重塑中也起着关键作用。成熟突触在经验依赖的可塑性和认知过程中不断经历突触更新(synaptic turnover)[14-17]。 星形胶质细胞调控出生后发育过程中突触的发育、维持和消除[18,19]。研究人员发现,星形胶质细胞通过吞噬受体MEGF10消除成人海马体中多余的兴奋性突触,星形胶质细胞Megf10的缺失导致兴奋性突触数量显着增加和突触可塑性异常[20]。进一步的研究表明,条件性敲除海马体中星形胶质细胞Mefg10的小鼠表现出近期识别记忆缺陷[20]。此外,星形胶质细胞特异性缺失突触发生调节因子ephrin-B1会增加谷氨酸能突触和未成熟树突棘的密度,同时增强近期的恐惧记忆,而ephrin-B1过度表达会导致树突棘缺失和情境记忆受损[21]。这些研究提出了星形胶质细胞调控突触更新和连接新模式的可能机制,这可能有助于成年海马记忆痕迹的形成,但仍然存在一些后续问题。例如,学习如何诱导不必要的兴奋性突触的星形胶质细胞募集;如何防止消除学习所需的兴奋性突触?
海马和额叶皮质脑区之间的持续相互作用发生在从近期记忆到远期记忆的过渡过程中[4]。最近的研究表明,星形胶质细胞参与脑区间活动的协调[12,28]。具体而言,在记忆获取过程中CA1中的星形胶质细胞Gi激活会损害远期而非近期的记忆检索,并降低检索过程中ACC的活动[12]。该研究进一步证明了在学习过程中向ACC投射的CA1细胞的大量募集;此时通过对星形胶质细胞的操纵特异性抑制这些投射,可防止ACC在记忆获取过程中的参与,导致远期记忆受损[12]。同样,在星形胶质细胞表达dnSNARE会抑制胞吐作用,损害海马-前额叶同步化以及近期记忆[28]。记忆领域的一个主要假说是海马在记忆中的作用有时间限制它是记忆获取和近期记忆检索所必需的,但对于远期记忆检索则变得多余,该功能被额叶皮质所取代[56]。但是,海马和前额叶皮层之间的这种时间分离并不是僵化的,上面对海马星形胶质细胞Gi偶联信号的操纵[55,57]以及其它的研究报道[58,59]表明,海马对远期记忆的巩固和检索也至关重要。值得注意的是,星形胶质细胞在这些过程中起关键作用。
2.3 星形胶质细胞的代谢支持
根据星形胶质细胞-神经元乳酸穿梭模型,星形胶质细胞糖酵解和神经元氧化通过乳酸转运在长期记忆形成中起协调作用[22]。遗传学和药理学方法的进步允许选择性抑制星形胶质细胞中的特定信号通路。一项研究表明,L-乳酸是长期记忆所必需的[23]。在抑制性回避任务中,减少海马星形胶质细胞中L-乳酸的产生会抑制LTP并损害长期记忆,并且补充外源性L-乳酸可以逆转这些影响[23]。敲低单羧酸转运体(MCTs)--负责将乳酸从星形胶质细胞(MCT1和MCT1)转运到神经元(MCT2)的转运体,也有类似的效果。进一步研究表明,Krebs循环底物丙酮酸和酮体在功能上可以替代乳酸,挽救由抑制糖原分解或敲低星形胶质细胞MCT1和MCT4引起的记忆障碍[63]。这些发现表明,星形胶质细胞糖原分解和/或糖酵解与星形胶质细胞-神经元乳酸穿梭相结合,为星形胶质细胞在记忆形成和储存中的关键作用提供了机制解释[24,25]。一些研究还集中在其他类型的乳酸信号机制上[25,26]。但是目前仍然有许多问题尚未得到解答。例如,乳酸只是提供代谢燃料还是也作为细胞信号?不能排除乳酸在此过程中发挥多种作用的可能性。此外,乳酸支持哪些靶向机制和细胞功能?
少突胶质谱系细胞,包括少突胶质细胞祖细胞(OPCs)和成熟的少突胶质细胞,具有许多重要功能,包括形成轴突的髓鞘、支持轴突代谢以及介导神经可塑性[27]。研究表明,正常的髓鞘结构是恐惧学习[28]和运动学习[29]所必需的。此外,运动学习、近期和远期的记忆提取需要少突胶质发生(oligodendrogenesis),而水迷宫的初始学习和恐惧的初始学习则不需要[32]。星形胶质细胞与少突胶质细胞共享其谱系,并通过共享缝隙连接与这些髓鞘形成细胞相互作用,缝隙连接允许小分子通过实现通信[33],并且在少突胶质细胞成熟和髓鞘形成中很重要[34,5]。此外,星形胶质细胞通过释放趋化因子和调节Shh信号(Sonic hedgehog signaling)传导来引导OPC迁移[36,37],并通过释放血小板衍生生长因子和骨形态发生蛋白[38,39]促进OPC成熟。此外,星形胶质细胞和少突胶质细胞都分泌并响应许多免疫因子[40],如肿瘤坏死因子、白介素和干扰素,这些因子对认知过程至关重要[41]。总体而言,星形胶质细胞和少突胶质细胞之间的相互作用可能对于调控学习和记忆很重要;未来的研究需要直接探索星形胶质细胞-少突胶质细胞相互作用在记忆处理中的因果作用。
本综述中,作者得出以下几点结论:(1)星形胶质细胞的代谢支持对短期记忆和长期记忆都非常重要;这种支持包括具有高能量需求的一系列过程,例如翻译后修饰、基因转录和蛋白质合成。(2)星形胶质细胞[Ca2+]由 Gq 耦合信号(如 CB1Rs、GABABRs 和 IP3R2s)或 Gs 耦合信号(如 A2ARs);这些信号通路对短期记忆和长期记忆都至关重要。此外,Gi偶联信号传导(如μ-阿片受体)对长期记忆很重要。(3)在神经网络水平上,星形胶质细胞对神经环路功能的调节对于长期记忆至关重要。因此,作者提出了以下长期记忆形成模型:星形胶质细胞检测和整合局部环境信息(记忆的内容、时间和地点),通过与神经元双向交换信号主动调节突触可塑性,并在协调过程中发生适应性功能和结构改变,进一步通过协调脑区间神经环路(系统可塑性)实现长期记忆形成。此外,星形胶质细胞为这些过程提供代谢支持(图2)。该领域未来的挑战,包括如何定义星形胶质细胞的兴奋或抑制、星形胶质细胞异质性的鉴定以及星形胶质细胞钙信号的编码和解码等。
【2】Biol Psychiatry︱高天明团队揭示星形胶质细胞通过乙酰胆碱受体M1对成年海马神经发生及记忆的调控作用【3】Biol Psychiatry︱高天明院士团队揭示ATP调节抑郁样行为的神经环路机制【4】Mol Psychiatry | 高天明课题组揭示恐惧记忆消退的局部神经网络机制
【5】Mol Psychiatry︱高天明课题组揭示星形胶质细胞和神经元在突触可塑性和记忆中的不同作用
【6】JCI︱高天明课题组揭示前额叶皮层在调控焦虑和恐惧中具有相反作用的神经回路
高天明(左),陈翌华(右)
(照片提供自:高天明团队)
【7】Brain︱郑州大学史长河/许予明课题组揭示NOTCH2NLC基因GGC重复扩增突变导致核糖体生成及翻译功能障碍【8】Sci Adv︱特异性降低神经元胰岛素通路可改善男性的老年健康【9】Cell Biosci︱患者来源的癫痫相关LGI1突变通过调节Kv1.1增加癫痫易感性【10】PNAS︱浙大胡薇薇/陈忠团队发现基于组胺H2受体的精神分裂症潜在药物靶标
学术会议预告【1】会议通知︱中国神经科学学会神经影像学分会2023学术年会【2】学术会议预告︱Novel Insights into Glia Function & Dysfunction【3】会议通知︱第六届中国神经科学学会神经退行性疾病分会年会会议通知【4】会议通知更新︱小胶质细胞生理与病理功能专题国际研讨会
参考文献(上下滑动查看)
1.Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014, 81: 728–739.2.Jun N, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2021, 109: 576–596.3.Jun N, Bellafard A, Qu Z, Yu X, Ollivier M, Gangwani MR, et al. Specifc and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron 2021, 109: 2256-2274.e9.4.Pinto-Duarte A, Roberts AJ, Ouyang K, Sejnowski TJ. Impairments in remote memory caused by the lack of Type 2 IP3 receptors. Glia 2019, 67: 1976–1989.5.Mederos S, Sánchez-Puelles C, Esparza J, Valero M, Ponomarenko A, Perea G. GABAergic signaling to astrocytes in the prefrontal cortex sustains goal-directed behaviors. Nat Neurosci 2021, 24: 82–92.6.Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates De novo neuronal potentiation and memory enhancement. Cell 2018, 174: 59-71.e14.7.Mederos S, Hernández-Vivanco A, Ramírez-Franco J, MartínFernández M, Navarrete M, Yang A, et al. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 2019, 67: 915–934.8.Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, JimenezBlasco D, Lopez-Fabuel I, Fernandez E, et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 2019, 1: 201–211.9.Zhang K, Förster R, He W, Liao X, Li J, Yang C, et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence. Nat Neurosci 2021, 24: 1686–1698.10.Durkee CA, Covelo A, Lines J, Kofuji P, Aguilar J, Araque A. Gi/o protein-coupled receptors inhibit neurons but activate astrocytes and stimulate gliotransmission. Glia 2019, 67: 1076–1093.11.Jun N, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 2019, 177: 1280-1292.e20.12.Nam MH, Han KS, Lee J, Won W, Koh W, Bae JY, et al. Activation of astrocytic μ-opioid receptor causes conditioned place preference. Cell Rep 2019, 28: 1154-1166.e513.Bazargani N, Attwell D. Astrocyte calcium signaling: The third wave. Nat Neurosci 2016, 19: 182–189.14.Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 1999, 402: 421–425.15.Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 2015, 523: 592–596.16.Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 2009, 462: 915–919.17.Maletic-Savatic M, Malinow R, Svoboda K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 1999, 283: 1923–1927.18.Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, 504: 394–400.19.Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron 2017, 96: 697–708.20.56. Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021, 590: 612–617.21.Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruf S, et al. Functional consequences of synapse remodeling following astrocyte-specifc regulation of ephrin-B1 in the adult Hippocampus. J Neurosci 2018, 38: 5710–5726.22.Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 1994, 91: 10625–10629.23.Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144: 810–823.24.Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008, 456: 745–749.25.Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, et al. Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 2014, 24: 2784–2795.26.Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, et al. The lactate receptor, G-proteincoupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015, 93: 1045–1055.27.Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021, 26: 103–117.28.Luo F, Zhang J, Burke K, Romito-DiGiacomo RR, Miller RH, Yang Y. Oligodendrocyte-specifc loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory. Exp Neurol 2018, 306: 92–104.29.Kato D, Wake H, Lee PR, Tachibana Y, Ono R, Sugio S, et al. Motor learning requires myelination to reduce asynchrony and spontaneity in neural activity. Glia 2020, 68: 193–210.30.Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, et al. Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 2020, 105: 150-164.e6.31. Wang F, Ren SY, Chen JF, Liu K, Li RX, Li ZF, et al. Myelin degeneration and diminished myelin renewal contribute to agerelated defcits in memory. Nat Neurosci 2020, 23: 481–486.32.Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nat Neurosci 2020, 23: 487–499.33.Orthmann-Murphy JL, Abrams CK, Scherer SS. Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 2008, 35: 101–116.34.Masaki K. Early disruption of glial communication via connexin gap junction in multiple sclerosis, Baló’s disease and neuromyelitis optica. Neuropathology 2015, 35: 469–480.35.Papaneophytou CP, Georgiou E, Karaiskos C, Sargiannidou I, Markoullis K, Freidin MM, et al. Regulatory role of oligodendrocyte gap junctions in infammatory demyelination. Glia 2018, 66: 2589–2603.36. Ortega MC, Cases O, Merchán P, Kozyraki R, Clemente D, de Castro F. Megalin mediates the infuence of sonic hedgehog on oligodendrocyte precursor cell migration and proliferation during development. Glia 2012, 60: 851–866.37.Clemente D, Ortega MC, Melero-Jerez C, de Castro F. The efect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 2013, 7: 268.38.Durand B, Raf M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 2000, 22: 64–71.39.See J, Zhang X, Eraydin N, Mun SB, Mamontov P, Golden JA, et al. Oligodendrocyte maturation is inhibited by bone morphogenetic protein. Mol Cell Neurosci 2004, 26: 481–492.40.Nutma E, van Gent D, Amor S, Peferoen LAN. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells 2020, 9: 600.41.McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 2009, 33: 355–366.42.Tay TL, Savage JC, Hui CW, Bisht K, Tremblay MÈ. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. J Physiol 2017, 595: 1929–194543.Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019, 67: 2125–2141.44.Akiyoshi R, Wake H, Kato D, Horiuchi H, Ono R, Ikegami A, et al. Microglia enhance synapse activity to promote local network synchronization. eNeuro 2018, 5: ENEURO.0088–ENEURO.0018.2018.45.De Luca SN, Soch A, Sominsky L, Nguyen TX, Bosakhar A, Spencer SJ. Glial remodeling enhances short-term memory performance in Wistar rats. J Neuroinfammation 2020, 17: 52.46.Golia MT, Poggini S, Alboni S, Garofalo S, Ciano Albanese N, Viglione A, et al. Interplay between infammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression. Brain Behav Immun 2019, 81: 484–494.47.Pettigrew LC, Kryscio RJ, Norris CM. The TNFα-transgenic rat: Hippocampal synaptic integrity, cognition, function, and postischemic cell loss. PLoS One 2016, 11: e0154721.48.Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018, 359: 1269–1273.49.Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541: 481–487.50.Jha MK, Jeon S, Suk K. Glia as a link between neuroinfammation and neuropathic pain. Immune Netw 2012, 12: 41–47.51.Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist 2019, 25: 227–240.52.Fields RD, Araque A, Johansen-Berg H, Lim SS, Lynch G, Nave KA. Glial biology in learning and cognition. Neuroscientist 2014, 20: 426–431.53.Porto-Pazos AB, Veiguela N, Mesejo P, Navarrete M, Alvarellos A, Ibáñez O, et al. Artifcial astrocytes improve neural network performance. PLoS One 2011, 6: e19109.54.Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Z, Zheng J, et al. Fast and sensitive GCaMP calcium indicators for imaging neural populations. bioRxiv 2021. https://doi.org/10.1101/2021.11.08. 467793v2.full55.Liu JH, Zhang M, Wang Q, Wu DY, Jie W, Hu NY, Lan JZ, Zeng K, Li SJ, Li XW, Yang JM, Gao TM. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry. 2022 Feb;27(2):873-88556.Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 2005, 6: 119–130.57.Kol A, Adamsky A, Groysman M, Kreisel T, London M, Goshen I. Astrocytes contribute to remote memory formation by modulating hippocampal-cortical communication during learning. Nat Neurosci 2020, 23: 1229–1239.58.Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, et al. Dynamics of retrieval strategies for remote memories. Cell 2011, 147: 678–689.59.Vetere G, Kenney JW, Tran LM, Xia F, Steadman PE, Parkinson J, et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 2017, 94: 363-374.e4.60.Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT, Nakao-Inoue H, et al. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 2020, 182: 388-403.e15.61.Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, et al. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 2020, 367: 688–694.
本文完