查看原文
其他

沪科版数学八下19.2《平行四边形》判定定理微课视频+知识点+课时导学练



电子教材





点击图片,查看大图

▼▼▼▼


微课视频





微课视频


同学们,微课视频较短,可以选择下面的名师课堂观看!

名师课堂:


知识点讲解





19.2《平行四边形》判定定理

第1课时:

第2课时:





课时导学案





19.2 平行四边形

一、内容和内容解析

平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用.

平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形.本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质.

关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复.本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”.在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”.“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在.平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性.同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质.

关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化.同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段.

在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位.

教学重点:平行四边形的概念和性质.

二、目标和目标解析

(1)教学目标:

①掌握平行四边形的概念及性质.

②学会用分析法、综合法解决问题.

③体会特殊与一般的辩证关系.

④逐步养成良好的个性思维品质.

(2)目标解析:

①使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.

②通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.

③通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.

④通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.

三、教学问题诊断分析

学生对平行四边形概念的理解,需要建立在对概念的内涵定义法的理解之上,而学生在小学学习平行四边形时,只停留在对图形的识别上,缺乏这方面的训练.因此,学生极易把平行四边形的概念当作已知,而忽视平行四边形与四边形概念的内涵包容、共性与个性以及它们的从属关系,容易造成只知道平行四边形的特性,而不知它是四边形的现象.所以,我们应在平行四边形概念的教学时,有针对性地设计揭示概念内涵的说明过程.

平行四边形性质的证明过程,一般学生都能理解,但对为什么要添加辅助线,又怎么想到作对角线,理解起来会有些困难.这属于思想方法方面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我们进行精心的设计,充分展示“将平行四边形转化为三角形”问题的过程,讲清楚添加辅助线的目的、作用和意义.

教学难点:平行四边形的概念;平行四边形性质证明过程中蕴涵的基本思想方法.

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式.在教学过程中,通过设置带有启发性和思考性的问题串,创设问题情景,启发学生思维.利用计算机和几何画板软件,并结合学生亲自动手操作测量,让学生亲身体验知识的产生、发展和形成的过程.

五、教学过程设计

(一)创设情境,引入概念

问题1:请同学们欣赏一组日常生活中的图片,你能发现它们都有什么共同特点?

    教师用电脑展示,学生观察,寻找共性

【设计意图】从学生熟悉的实际问题出发,创设情境,提出问题,可以激发学生强烈的好奇心和求知欲,使学生在观察、思考的活动中,对平行四边形先有初步的感性认识.、

教师通过电脑,演示从实物中抽象出平行四边形图形的过程.

【设计意图】从实际问题中抽出几何图形——平行四边形,让学生经历将实际问题抽象为数学问题的过程,进一步强化学生对平行四边形图形的认识.

问题2:你还能举出一些例子吗?

【设计意图】通过举例,可以让学生认识到平行四边形在生活、生产中的广泛应用,知道本节课的研究具有实际意义,从而激发学生的学习兴趣,引出本节课主题.

问题3:一个四边形具备了什么特征才是平行四边形呢?

教师引导学生观察、总结共同特点:两组对边平行.

【设计意图】让学生能够描述出平行四边形的特征,弄清四边形与平行四边形的从属关系,明确四边形与平行四边形的异同点,为概念的形成做好铺垫.

(二)观察感知,形成概念

问题4:通过比较四边形和平行四边形的不同,如果从“对边”的位置关系入手,你认为什么样的四边形是平行四边形呢?

教师引导学生明确平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形.

【设计意图】问题中带有提示,降低了难度.

问题5:怎样表示平行四边形?

教师介绍平行四边形的表示方法.

【设计意图】加深对平行四边形概念的理解.

问题6:如果已知一个四边形是平行四边形,可以得到哪些结论?

 

       

【设计意图】平行四边形的定义不仅是平行四边形的一个判定方法,还是平行四边形的一个性质.

(三)引导实验,探索新知

问题7:我们已经知道平行四边形是特殊的四边形,由定义可知平行四边形的对边平行.除此之外,你还能发现平行四边形的边、角之间存在什么结论吗?

教师提出问题,学生观察猜想.

【设计意图】加强学生对平行四边形的感性认识,培养敢于猜想的意识.

教师引导学生以小组合作的方式,先利用定义画一个平行四边形,再测量其四条边的长度、四个内角的度数,填写表格,之后,让学生汇报研究的结果.

教师利用几何画板的度量工具进行演示验证结果.

得出平行四边形的性质:平行四边形的两组对边分别相等;平行四边形的两组对角分别相等.

【设计意图】使学生不仅感受到亲自动手测量的乐趣,而且通过观察几何画板动态演示的过程,进一步强化对平行四边形的直观感知,在解决问题过程中体会合情推理的作用,从而学会观察、猜想、验证等解决问题的方法.

问题8:所有的平行四边形是否都具有上述的结论,你能利用学过的知识证明这个结论吗?

教师提出问题,进行适当引导,让学生自己发现:证明线段相等、角相等通常是利用全等的方法,而图形中没有三角形,只有四边形,可见需添加辅助线,构造三角形,将四边形转化为三角形来解决,使难点得以突破.

【设计意图】使学生体会几何论证是探究性活动的自然延续和必然发展,感受到数学结论的确定性和证明的必要性.

(四)巩固概念,应用拓展

问题9:基础训练:

沪科版八年级上册数学全册教材|电子课本

沪科版八年级下册数学全册教材|电子课本


第十六章 二次根式

16.1《二次根式》微课视频+知识点

16.2.1《二次根式的乘除》微课视频

第十七章 一元二次方程

17.1《一元二次方程》微课视频+知识点

17.2.1《一元二次方程的解法》配方法

17.2.2《一元二次方程的解法》公式法

17.2.3《一元二次方程的解法》因式分解法

17.3《一元二次方程根的判别式》

17.4《一元二次方程的根与系数的关系》

17.5《一元二次方程的应用》

第十八章 勾股定理

18.1《勾股定理》

18.2《勾股定理的逆定理》

19.1《多边形内角和》

往期精彩回顾




部编版七八九年级语文下册同步微课人教版七八九年级数学下册同步微课沪科版七八九年级数学下册同步微课人教版七八九年级英语下册同步微课部编版7-9年级道德与法治下册微课部编版初中七八九年级历史下册微课人教版初中八九年级理化下册微课北师大版八九年级物理下册微课视频
微信号:czwkzy扫码关注我们
图文来自网络,版权归原作者,如有不妥,告知即删

点击阅读原文查看更多微课视频!

觉得不错,点个“在看”~

▼▼▼

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存