中南大学孙伟教授、葛鹏副教授:阳离子可调型电催化剂助力金属硫化物快速储锂
【研究背景】
作为最实用的储能系统,碱金属离子电池因具有长寿命和高功率密度等特点引起了广泛的关注。其中,金属硫化物例如MoS2具有显著的容量和丰富的氧化还原电位,被广泛应用于储能领域,然而它们的离子存储能力仍受限于多硫化物的溶解和缓滞的电化学动力学。目前,通过构筑纳米结构、与碳材料复合等方法可以在一定程度上缓解以上问题,但可溶性 LiPSs 和 Li2S 之间的转化反应缓滞仍未得以有效解决。根据Li-S电池体系的经验,引入金属氧化物等电催化剂在加速多硫化物氧化还原反应的速度方面起着至关重要的作用。因此,探索并揭示电催化剂在锂离子电池中的作用规律及内在机制,对深层次降低转化反应能垒、提高金属硫化物的储锂性能具有重要意义。
【工作介绍】
近日,中南大学资生院孙伟教授、葛鹏副教授在Energy Storage Materials(影响因子:17.78)上发表题为“Engineering Metal-Sulfides with Cations-Tunable Metal-Oxides Electrocatalysts with Promoted Catalytic Conversion for Robust Ions-storage Capability”的研究论文。作者通过化学沉淀-热处理法成功地将阳离子可调型 MOx(M=Mn、Fe、Co、Ni)电催化剂引入到 MoS2 中,且在 MoS2 和 MOx 之间引入了Mo-S-M型界面化学键,这些化学键可以提高 MoS2@MOx 复合材料的结构完整性以及离子、电子转移速率。在金属阳离子和多硫化锂中S 原子强结合力的作用下,MoS2@MOx 的离子存储能力得到系统性增强。在MOx 阳离子外层空轨道数和离子半径逐渐演变的诱发下,它们的电催化能力依次为:Fe2O3>MnO>CoO>NiO。得益于 Fe3+ 独特的 3d 轨道分布、较小的离子半径和 Mo-S-Fe 键的协同效应,MoS2@Fe2O3 在5.0 A g−1 下循环 3000 次后比容量仍保持在 612 mAh g−1。最后,作者通过进一步对动力学行为和结构转变过程进行详细分析,有力证实了引入MOx 和 Mo-S-M 化学键在提高金属硫化物的离子存储能力方面发挥了重要作用。该项工作深入揭示了阳离子可调型 MOx 电催化剂的作用机制,并为设计先进的金属硫化物电极材料提供了有效的策略。该文章第一作者为中南大学博士生赵文青,中南大学孙伟教授&葛鹏副教授为本文通讯作者。
【文章图表】
图1 纯MoS2和MoS2@MOx 复合材料的物化性质及储锂机制示意图
Figure. 1 The physical-chemical properties of the as-obtained samples: XRD patterns (a), Raman spectrums (b), TG curves (c), particle size distribution (d), FT-IR spectrums (e), ESR spectrums (f), and the simplified lithium storage mechanism of MoS2@MOx (g).
图2 纯MoS2和MoS2@MOx 复合材料的XPS图谱分析
Figure. 2 XPS spectra of the as-obtained samples: survey XPS spectrums (a), high-resolution spectrums Mo 3d and S 2p of MoS2 (b-c), Mo 3d and S 2p of MoS2 and MoS2@MOx (d-e), Mn 2p of M-Mn (f), Fe 2p of M-Fe (g), Co 2p of M-Co (h), Ni 2p of M-Ni (i).
图3 纯MoS2和MoS2@MOx 复合材料的形貌及结构
Figure. 3 The structure of the as-obtained samples: SEM, TEM, HRTEM images and SAED patterns of A1-A4) M-Mn, B1-B4) M-Fe, C1-C4) M-Co, D1-D4) M-Ni, and E1-E4) mapping images of M-Fe.
图4 纯MoS2和MoS2@MOx 复合材料的电化学性能
Figure. 4 The lithium-ions storage capabilities of the as-obtained samples: a) cycling stability at 0.5 A g−1, b, c) the charge/discharge curves of 10th and 100th loops at 0.5 A g−1, d) CV curves of MoS2 and M-Fe of 1st and 2nd loops at 0.1mV s-1, e) the long-term cycling stability at 2.0 A g−1, f, g) differential charge vs. voltage curve (dQ/dV) of 200th, 300th, 400th, 500th, 600th loops at 2.0 A g−1, i) the charge/discharge curves at different current densities h) the rate performance at various density currents, j) high-rate properties at 5.0 A g−1.
图5 纯MoS2和MoS2@MOx 复合材料的电化学动力学分析
Figure. 5 The electrochemical kinetics of the as-obtained samples: the long-term CV curves of MoS2 and M-Fe at 2 mV s−1 a, b) from 0.01V to 3.0V and c,d) from 1.5V to 3.0V, e) CV curves of M-Fe at 0.1-0.9 mV s-1, f) relative capacitive-controlling contributions at 0.9 mV-1, g) the linear relation of log(i) versus log(v), h) the linear relation of peak current IP versus scan rate v, i) the lithium-ions diffusion coefficients, j) the fitted Nyquist plots and the equivalent circuit model of M-Fe, k) the lithium-ions diffusion coefficients of MoS2 and M-Fe electrodes at different cycle numbers.
图6 纯MoS2和MoS2@Fe2O3 复合材料的转化反应动力学表征
Figure. 6 In-depth electrochemical kinetics of conversion reactions of MoS2 and M-Fe: a, b) GITT curves during the charge/discharge process, c,d) corresponding DLi+ values e, f) their fitted Nyquist plots at various potentials, g, h) optical images and UV-vis adsorption spectrums of the disassembled components from MoS2 and M-Fe half-cell after 200 loops at 2.0 A g-1, i, j) optical images and UV-vis spectrums of Li2S6 adsorption tests, k) CV curves of symmetric cells in electrolytes with/without 0.5 M Li2S6 at 50 mV s-1, l) potentiostatic discharge profiles at 2.05V with MoS2 and M-Fe electrodes.
图7 纯MoS2和MoS2@Fe2O3 复合材料的DFT计算
Figure. 7 Theoretical calculations on adsorption and catalysis of LiPSs and Li2S on the surface of MoS2 and Fe2O3: the interaction configuration and corresponding binding energies of S8, Li2S8, Li2S6, Li2S4, Li2S2 and Li2S on a) MoS2, b) Fe2O3, c) energy profiles for the sulfur reduction on MoS2 and Fe2O3 substrates, decomposition barriers of Li2S and the corresponding migration pathway of Li-ion on d) MoS2, e) Fe2O3.
图8 纯MoS2和MoS2@Fe2O3 复合材料的循环前、后结构表征
Figure. 8 The structural exploration of MoS2 and M-Fe electrodes at pristine condition and after 200 loops: ex situ TEM, HRTEM images and SAED patterns of A1-A3) pristine MoS2, B1-B3) MoS2 after 200 loops, C1-C3) pristine M-Fe, D1-D3) M-Fe after 200 loops, E) ex situ XRD patterns, F) Raman spectrums, G-H) high-resolution spectrums of Mo 3d and S 2p.
图9 纯MoS2和MoS2@Fe2O3 复合材料的锂离子全电池电化学性能
Figure. 9 Electrochemistry property of full LIBs battery assembled with LiFePO4@C cathode vs. MoS2@Fe2O3 anode a) schematic illustration of catalytic conversion behaviors by anchored Fe2O3, b) cycling stabilities at 0.2 A g−1 and 0.5 A g−1, c) discharge/charge platforms of 5th loop, d) CV curve at 0.3mV -1, e) the charge/discharge platforms of 92th-100th loops, f, g) the optical images of light emitting diodes and mini fan running using one full cell.
【结论】
综上所述,本文通过化学沉淀-热处理方法合理地设计了MOx(M=Mn、Fe、Co、Ni)均匀锚定在MoS2 纳米片上的复合材料。由于过渡金属阳离子与 MoS2 的 S 原子之间的强相互作用,MoS2 和 MOx 的界面通过 Mo-S-M 化学键相互连接,为离子、电子的快速转移提供了便利的通道。引入的 MOx 作为电催化剂可以捕获可溶性 LiPS, 并通过强 S 结合和 Li 结合加速其转化动力学。对于具有二价阳离子的 MnO、CoO 和 NiO,其3d 空轨道数随着价电子数的增加而减少,导致与 LiPS 的 S 结合减弱。与 MnO 相比,具有三价阳离子的 Fe2O3 具有相同的3d 空轨道数,Fe3+ 较小的离子半径使其与 LiPSs 的相互作用最强。得益于界面桥键和催化功能的协同作用,MoS2@MOx的储锂能力得到显著提高。在MoS2@MOx 负极中,锂离子在嵌锂/脱锂过程中的扩散速度加快,从根本上促进了从 LiPSs 到不溶性 Li2S 的转化反应。此外,理论计算表明,Fe2O3 可以作为双功能催化剂,在放电和充电过程中加速 LiPSs 还原和 Li2S 氧化的电化学动力学。这种简便且高效的调控方法为通过引入电催化剂制备先进储能材料提供了思路。
Wenqing Zhao, Shaohui Yuan, Limin Zhang, Feng Jiang, Yue Yang, Guoqiang Zou, Hongshuai Hou, Peng Ge*, Wei Sun*, and Xiaobo Ji. (2021). Engineering Metal-Sulfides with Cations-Tunable Metal-Oxides Electrocatalysts with Promoted Catalytic Conversion for Robust Ions-storage Capability. Energy Storage Materials.
https://www.sciencedirect.com/science/article/pii/S2405829721005353
2021-11-19
2021-11-19
2021-11-19
2021-11-19
2021-11-19
2021-11-19
2021-11-18
2021-11-18
2021-11-18
2021-11-18
2021-11-18